Results 1 
6 of
6
Almost Everywhere High Nonuniform Complexity
, 1992
"... . We investigate the distribution of nonuniform complexities in uniform complexity classes. We prove that almost every problem decidable in exponential space has essentially maximum circuitsize and spacebounded Kolmogorov complexity almost everywhere. (The circuitsize lower bound actually exceeds ..."
Abstract

Cited by 182 (42 self)
 Add to MetaCart
. We investigate the distribution of nonuniform complexities in uniform complexity classes. We prove that almost every problem decidable in exponential space has essentially maximum circuitsize and spacebounded Kolmogorov complexity almost everywhere. (The circuitsize lower bound actually exceeds, and thereby strengthens, the Shannon 2 n n lower bound for almost every problem, with no computability constraint.) In exponential time complexity classes, we prove that the strongest relativizable lower bounds hold almost everywhere for almost all problems. Finally, we show that infinite pseudorandom sequences have high nonuniform complexity almost everywhere. The results are unified by a new, more powerful formulation of the underlying measure theory, based on uniform systems of density functions, and by the introduction of a new nonuniform complexity measure, the selective Kolmogorov complexity. This research was supported in part by NSF Grants CCR8809238 and CCR9157382 and in ...
The quantitative structure of exponential time
 Complexity Theory Retrospective II
, 1997
"... ..."
Equivalence of Measures of Complexity Classes
"... The resourcebounded measures of complexity classes are shown to be robust with respect to certain changes in the underlying probability measure. Specifically, for any real number ffi ? 0, any uniformly polynomialtime computable sequence ~ fi = (fi 0 ; fi 1 ; fi 2 ; : : : ) of real numbers (biases ..."
Abstract

Cited by 74 (24 self)
 Add to MetaCart
The resourcebounded measures of complexity classes are shown to be robust with respect to certain changes in the underlying probability measure. Specifically, for any real number ffi ? 0, any uniformly polynomialtime computable sequence ~ fi = (fi 0 ; fi 1 ; fi 2 ; : : : ) of real numbers (biases) fi i 2 [ffi; 1 \Gamma ffi], and any complexity class C (such as P, NP, BPP, P/Poly, PH, PSPACE, etc.) that is closed under positive, polynomialtime, truthtable reductions with queries of at most linear length, it is shown that the following two conditions are equivalent. (1) C has pmeasure 0 (respectively, measure 0 in E, measure 0 in E 2 ) relative to the cointoss probability measure given by the sequence ~ fi. (2) C has pmeasure 0 (respectively, measure 0 in E, measure 0 in E 2 ) relative to the uniform probability measure. The proof introduces three techniques that may be useful in other contexts, namely, (i) the transformation of an efficient martingale for one probability measu...
Recursive computational depth
 Information and Computation
, 1999
"... In the 1980's, Bennett introduced computational depth as a formal measure of the amount of computational history that is evident in an object's structure. In particular, Bennett identi ed the classes of weakly deep and strongly deep sequences, and showed that the halting problem is strongl ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
(Show Context)
In the 1980's, Bennett introduced computational depth as a formal measure of the amount of computational history that is evident in an object's structure. In particular, Bennett identi ed the classes of weakly deep and strongly deep sequences, and showed that the halting problem is strongly deep. Juedes, Lathrop, and Lutz subsequently extended this result by de ning the class of weakly useful sequences, and proving that every weakly useful sequence is strongly deep. The present paper investigates re nements of Bennett's notions of weak and strong depth, called recursively weak depth (introduced by Fenner, Lutz and Mayordomo) and recursively strong depth (introduced here). It is argued that these re nements naturally capture Bennett's idea that deep objects are those which \contain internal evidence of a nontrivial causal history. &quot; The fundamental properties of recursive computational depth are developed, and it is shown that the recursively weakly (respectively, strongly) deep sequences form a proper subclass of the class of weakly (respectively, strongly) deep sequences. The abovementioned theorem of Juedes, Lathrop, and Lutz is then strengthened by proving that every weakly useful sequence is recursively strongly deep. It follows from these results that not every strongly deep sequence is weakly useful, thereby answering a question posed by Juedes.
Hard Instances of Hard Problems 1
"... This paper investigates the instance complexities of problems that are hard or weakly hard for exponential time under polynomial time, manyone reductions. It is shown that almost every instance of almost every problem in exponential time has essentially maximal instance complexity. It follows that ..."
Abstract
 Add to MetaCart
(Show Context)
This paper investigates the instance complexities of problems that are hard or weakly hard for exponential time under polynomial time, manyone reductions. It is shown that almost every instance of almost every problem in exponential time has essentially maximal instance complexity. It follows that every weakly hard problem has a dense set of such maximally hard instances. This extends the theorem, due to Orponen, Ko, Schoning and Watanabe (1994), that every hard problem for exponential time has a dense set of maximally hard instances. Complementing this, it is shown that every hard problem for exponential time also has a dense set of unusually easy instances. 1