Results 1  10
of
57
On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27
, 1975
"... integers is arbitrarily partitioned into two classes then at least one class contains arbitrarily long arithmetic progressions. It is well known and obvious that neither class must contain an infinite arithmetic progression. In fact, it is easy to see that for any sequence an there is another sequen ..."
Abstract

Cited by 251 (1 self)
 Add to MetaCart
integers is arbitrarily partitioned into two classes then at least one class contains arbitrarily long arithmetic progressions. It is well known and obvious that neither class must contain an infinite arithmetic progression. In fact, it is easy to see that for any sequence an there is another sequence bn9 with bn> an9 which contains no arithmetic progression of three terms, but which intersects every infinite arithmetic progression. The finite form of van der Waerden's theorem goes as follows: For each positive integer n9 there exists a least integer f{n) with the property that if the integers from 1 to /(/?) are arbitrarily partitioned into two classes, then at least one class contains an arithmetic progression of « terms. (For a short proof, see the note of Graham and Rothschild [5].) However, the best upper bound on f{n) known at present is extremely poor. The best lower bound known, due to Berlekamp [3], asserts that/(«) < nln9 for n prime, which improves previous results of Erdös, Rado and W. Schmidt. More than 40 years ago, Erdös and Turân [4] considered the quantity rk{n)9 defined to be the greatest integer / for which there is a sequence of integers 0 < a \ < a2 < •• • < a; ^ n which does not contain an arithmetic progression of k terms. They were led to the investigation of rk{n) by several things. First of all the problem of estimating rk{n) is clearly interesting in itself. Secondly, rk{n) < n/2 would imply f{k) < 77, i.e., they hoped to improve the poor upper bound on f{k) by investigating rk{n). Finally, an old question in number theory asks if there are arbitrarily long arithmetic progressions of prime numbers. From rk{n) < %{rì) this would follow immediately. The hope was that this problem on primes could be attacked not by
Szemerédi's Regularity Lemma and Its Applications in Graph Theory
, 1996
"... Szemerédi's Regularity Lemma is an important tool in discrete mathematics. It says that, in some sense, all graphs can be approximated by randomlooking graphs. Therefore the lemma helps in proving theorems for arbitrary graphs whenever the corresponding result is easy for random graphs. Recent ..."
Abstract

Cited by 217 (3 self)
 Add to MetaCart
Szemerédi's Regularity Lemma is an important tool in discrete mathematics. It says that, in some sense, all graphs can be approximated by randomlooking graphs. Therefore the lemma helps in proving theorems for arbitrary graphs whenever the corresponding result is easy for random graphs. Recently quite a few new results were obtained by using the Regularity Lemma, and also some new variants and generalizations appeared. In this survey we describe some typical applications and some generalizations.
The primes contain arbitrarily long arithmetic progressions
 Ann. of Math
"... Abstract. We prove that there are arbitrarily long arithmetic progressions of primes. ..."
Abstract

Cited by 169 (27 self)
 Add to MetaCart
(Show Context)
Abstract. We prove that there are arbitrarily long arithmetic progressions of primes.
A variant of the hypergraph removal lemma
, 2006
"... Abstract. Recent work of Gowers [10] and Nagle, Rödl, Schacht, and Skokan [15], [19], [20] has established a hypergraph removal lemma, which in turn implies some results of Szemerédi [26] and FurstenbergKatznelson [7] concerning onedimensional and multidimensional arithmetic progressions respecti ..."
Abstract

Cited by 53 (4 self)
 Add to MetaCart
(Show Context)
Abstract. Recent work of Gowers [10] and Nagle, Rödl, Schacht, and Skokan [15], [19], [20] has established a hypergraph removal lemma, which in turn implies some results of Szemerédi [26] and FurstenbergKatznelson [7] concerning onedimensional and multidimensional arithmetic progressions respectively. In this paper we shall give a selfcontained proof of this hypergraph removal lemma. In fact we prove a slight strengthening of the result, which we will use in a subsequent paper [29] to establish (among other things) infinitely many constellations of a prescribed shape in the Gaussian primes. 1.
Integer sets containing no arithmetic progressions
 J. London Math. Soc
, 1987
"... lfh and k are positive integers there exists N(h, k) such that whenever N ^ N(h, k), and the integers 1,2,...,N are divided into h subsets, at least one must contain an arithmetic progression of length k. This is the famous theorem of van der Waerden [10], dating from 1927. The proof of this uses mu ..."
Abstract

Cited by 51 (0 self)
 Add to MetaCart
(Show Context)
lfh and k are positive integers there exists N(h, k) such that whenever N ^ N(h, k), and the integers 1,2,...,N are divided into h subsets, at least one must contain an arithmetic progression of length k. This is the famous theorem of van der Waerden [10], dating from 1927. The proof of this uses multiple nested inductions, which result
A quantitative ergodic theory proof of Szemerédi’s theorem
, 2004
"... A famous theorem of Szemerédi asserts that given any density 0 < δ ≤ 1 and any integer k ≥ 3, any set of integers with density δ will contain infinitely many proper arithmetic progressions of length k. For general k there are essentially four known proofs of this fact; Szemerédi’s original combin ..."
Abstract

Cited by 37 (14 self)
 Add to MetaCart
(Show Context)
A famous theorem of Szemerédi asserts that given any density 0 < δ ≤ 1 and any integer k ≥ 3, any set of integers with density δ will contain infinitely many proper arithmetic progressions of length k. For general k there are essentially four known proofs of this fact; Szemerédi’s original combinatorial proof using the Szemerédi regularity lemma and van der Waerden’s theorem, Furstenberg’s proof using ergodic theory, Gowers’ proof using Fourier analysis and the inverse theory of additive combinatorics, and Gowers’ more recent proof using a hypergraph regularity lemma. Of these four, the ergodic theory proof is arguably the shortest, but also the least elementary, requiring in particular the use of transfinite induction (and thus the axiom of choice), decomposing a general ergodic system as the weakly mixing extension of a transfinite tower of compact extensions. Here we present a quantitative, selfcontained version of this ergodic theory proof, and which is “elementary ” in the sense that it does not require the axiom of choice, the use of infinite sets or measures, or the use of the Fourier transform or inverse theorems from additive combinatorics. It also gives explicit (but extremely poor) quantitative bounds.
The Gaussian primes contain arbitrarily shaped constellations
 J. Anal. Math
"... ..."
(Show Context)
A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma, preprint
"... Abstract. We introduce a correspondence principle (analogous to the Furstenberg correspondence principle) that allows one to extract an infinite random graph or hypergraph from a sequence of increasingly large deterministic graphs or hypergraphs. As an application we present a new (infinitary) proof ..."
Abstract

Cited by 20 (5 self)
 Add to MetaCart
(Show Context)
Abstract. We introduce a correspondence principle (analogous to the Furstenberg correspondence principle) that allows one to extract an infinite random graph or hypergraph from a sequence of increasingly large deterministic graphs or hypergraphs. As an application we present a new (infinitary) proof of the hypergraph removal lemma of NagleSchachtRödlSkokan and Gowers, which does not require the hypergraph regularity lemma and requires significantly less computation. This in turn gives new proofs of several corollaries of the hypergraph removal lemma, such as Szemerédi’s theorem on arithmetic progressions. 1.