Results 1  10
of
116
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Sparse matrices in Matlab: Design and implementation
, 1991
"... We have extended the matrix computation language and environment Matlab to include sparse matrix storage and operations. The only change to the outward appearance of the Matlab language is a pair of commands to create full or sparse matrices. Nearly all the operations of Matlab now apply equally to ..."
Abstract

Cited by 164 (22 self)
 Add to MetaCart
(Show Context)
We have extended the matrix computation language and environment Matlab to include sparse matrix storage and operations. The only change to the outward appearance of the Matlab language is a pair of commands to create full or sparse matrices. Nearly all the operations of Matlab now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportionaltothenumber of arithmetic operations on nonzeros.
A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering
, 1996
"... ..."
(Show Context)
The design and use of algorithms for permuting large entries to the diagonal of sparse matrices
 SIAM J. MATRIX ANAL. APPL
, 1999
"... ..."
(Show Context)
Fast and Effective Algorithms for Graph Partitioning and Sparse Matrix Ordering
 IBM JOURNAL OF RESEARCH AND DEVELOPMENT
, 1996
"... Graph partitioning is a fundamental problem in several scientific and engineering applications. In this paper, we describe heuristics that improve the stateoftheart practical algorithms used in graphpartitioning software in terms of both partitioning speed and quality. An important use of graph ..."
Abstract

Cited by 60 (11 self)
 Add to MetaCart
(Show Context)
Graph partitioning is a fundamental problem in several scientific and engineering applications. In this paper, we describe heuristics that improve the stateoftheart practical algorithms used in graphpartitioning software in terms of both partitioning speed and quality. An important use of graphpartitioning is in ordering sparse matrices for obtaining direct solutions to sparse systems of linear equations arising in engineering and optimization applications. The experiments reported in this paper show that the use of these heuristics results in a considerable improvement in the quality of sparsematrix orderings over conventional ordering methods, especially for sparse matrices arising in linear programming problems. In addition, our graphpartitioningbased ordering algorithm is more parallelizable than minimumdegreebased ordering algorithms, and it renders the ordered matrix more amenable to parallel factorization.
Permuting Sparse Rectangular Matrices into BlockDiagonal Form
 SIAM Journal on Scientific Computing
, 2002
"... We investigate the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for solving the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. W ..."
Abstract

Cited by 58 (19 self)
 Add to MetaCart
(Show Context)
We investigate the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for solving the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose bipartite graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Our experiments on a wide range of matrices, using stateoftheart graph and hypergraph partitioning tools MeTiS and PaToH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and runtime.
Graph Partitioning Algorithms With Applications To Scientific Computing
 Parallel Numerical Algorithms
, 1997
"... Identifying the parallelism in a problem by partitioning its data and tasks among the processors of a parallel computer is a fundamental issue in parallel computing. This problem can be modeled as a graph partitioning problem in which the vertices of a graph are divided into a specified number of su ..."
Abstract

Cited by 50 (0 self)
 Add to MetaCart
Identifying the parallelism in a problem by partitioning its data and tasks among the processors of a parallel computer is a fundamental issue in parallel computing. This problem can be modeled as a graph partitioning problem in which the vertices of a graph are divided into a specified number of subsets such that few edges join two vertices in different subsets. Several new graph partitioning algorithms have been developed in the past few years, and we survey some of this activity. We describe the terminology associated with graph partitioning, the complexity of computing good separators, and graphs that have good separators. We then discuss early algorithms for graph partitioning, followed by three new algorithms based on geometric, algebraic, and multilevel ideas. The algebraic algorithm relies on an eigenvector of a Laplacian matrix associated with the graph to compute the partition. The algebraic algorithm is justified by formulating graph partitioning as a quadratic assignment p...
Robust Ordering of Sparse Matrices using Multisection
 Department of Computer Science, York University
, 1996
"... In this paper we provide a robust reordering scheme for sparse matrices. The scheme relies on the notion of multisection, a generalization of bisection. The reordering strategy is demonstrated to have consistently good performance in terms of fill reduction when compared with multiple minimum degree ..."
Abstract

Cited by 50 (2 self)
 Add to MetaCart
(Show Context)
In this paper we provide a robust reordering scheme for sparse matrices. The scheme relies on the notion of multisection, a generalization of bisection. The reordering strategy is demonstrated to have consistently good performance in terms of fill reduction when compared with multiple minimum degree and generalized nested dissection. Experimental results show that by using multisection, we obtain an ordering which is consistently as good as or better than both for a wide spectrum of sparse problems. 1 Introduction It is well recognized that finding a fillreducing ordering is crucial in the success of the numerical solution of sparse linear systems. For symmetric positivedefinite systems, the minimum degree [38] and the nested dissection [11] orderings are perhaps the most popular ordering schemes. They represent two opposite approaches to the ordering problem. However, they share a common undesirable characteristic. Both schemes produce generally good orderings, but the ordering qua...
Sparse Gaussian Elimination on High Performance Computers
, 1996
"... This dissertation presents new techniques for solving large sparse unsymmetric linear systems on high performance computers, using Gaussian elimination with partial pivoting. The efficiencies of the new algorithms are demonstrated for matrices from various fields and for a variety of high performan ..."
Abstract

Cited by 43 (7 self)
 Add to MetaCart
This dissertation presents new techniques for solving large sparse unsymmetric linear systems on high performance computers, using Gaussian elimination with partial pivoting. The efficiencies of the new algorithms are demonstrated for matrices from various fields and for a variety of high performance machines. In the first part we discuss optimizations of a sequential algorithm to exploit the memory hierarchies that exist in most RISCbased superscalar computers. We begin with the leftlooking supernodecolumn algorithm by Eisenstat, Gilbert and Liu, which includes Eisenstat and Liu's symmetric structural reduction for fast symbolic factorization. Our key contribution is to develop both numeric and symbolic schemes to perform supernodepanel updates to achieve better data reuse in cache and floatingpoint register...