Results 1  10
of
75
Domain Theory in Logical Form
 Annals of Pure and Applied Logic
, 1991
"... The mathematical framework of Stone duality is used to synthesize a number of hitherto separate developments in Theoretical Computer Science: • Domain Theory, the mathematical theory of computation introduced by Scott as a foundation for denotational semantics. • The theory of concurrency and system ..."
Abstract

Cited by 248 (10 self)
 Add to MetaCart
(Show Context)
The mathematical framework of Stone duality is used to synthesize a number of hitherto separate developments in Theoretical Computer Science: • Domain Theory, the mathematical theory of computation introduced by Scott as a foundation for denotational semantics. • The theory of concurrency and systems behaviour developed by Milner, Hennessy et al. based on operational semantics. • Logics of programs. Stone duality provides a junction between semantics (spaces of points = denotations of computational processes) and logics (lattices of properties of processes). Moreover, the underlying logic is geometric, which can be computationally interpreted as the logic of observable properties—i.e. properties which can be determined to hold of a process on the basis of a finite amount of information about its execution. These ideas lead to the following programme:
Dynamical systems, Measures and Fractals via Domain Theory
 Information and Computation
, 1995
"... We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L ar ..."
Abstract

Cited by 70 (20 self)
 Add to MetaCart
We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L are respectively the Vietoris hyperspace, the upper hyperspace and the lower hyperspace functors. We show that if (X, f) is chaotic, then so is (UX, U f). When X is locally compact UX, is a continuous bounded complete dcpo. If X is second countable as well, then UX will be omegacontinuous and can be given an effective structure. We show how strange attractors, attractors of iterated function systems (fractals) and Julia sets are obtained effectively as fixed points of deterministic functions on UX or fixed points of nondeterministic functions on CUX where C is the convex (Plotkin) power domain. We also show that the set, M(X), of finite Borel measures on X can be embedded in PUX, where P is the probabilistic power domain. This provides an effective framework for measure theory. We then prove that the invariant measure of an hyperbolic iterated function system with probabilities can be obtained as the unique fixed point of an associated continuous function on PUX.
Domain Theory and Integration
 Theoretical Computer Science
, 1995
"... We present a domaintheoretic framework for measure theory and integration of bounded realvalued functions with respect to bounded Borel measures on compact metric spaces. The set of normalised Borel measures of the metric space can be embedded into the maximal elements of the normalised probabilis ..."
Abstract

Cited by 65 (15 self)
 Add to MetaCart
(Show Context)
We present a domaintheoretic framework for measure theory and integration of bounded realvalued functions with respect to bounded Borel measures on compact metric spaces. The set of normalised Borel measures of the metric space can be embedded into the maximal elements of the normalised probabilistic power domain of its upper space. Any bounded Borel measure on the compact metric space can then be obtained as the least upper bound of an !chain of linear combinations of point valuations (simple valuations) on the upper space, thus providing a constructive setup for these measures. We use this setting to define a new notion of integral of a bounded realvalued function with respect to a bounded Borel measure on a compact metric space. By using an !chain of simple valuations, whose lub is the given Borel measure, we can then obtain increasingly better approximations to the value of the integral, similar to the way the Riemann integral is obtained in calculus by using step functions. ...
Proving Concurrent Constraint Programs Correct
, 1994
"... We develop a compositional proofsystem for the partial correctness of concurrent constraint programs. Soundness and (relative) completeness of the system are proved with respect to a denotational semantics based on the notion of strongest postcondition. The strongest postcondition semantics provide ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
We develop a compositional proofsystem for the partial correctness of concurrent constraint programs. Soundness and (relative) completeness of the system are proved with respect to a denotational semantics based on the notion of strongest postcondition. The strongest postcondition semantics provides a justification of the declarative nature of concurrent constraint programs, since it allows to view programs as theories in the specification logic. 1 Introduction Concurrent constraint programming ([24, 25, 26]) (ccp, for short) is a concurrent programming paradigm which derives from replacing the storeasvaluation conception of von Neumann computing by the storeas constraint model. Its computational model is based on a global store, represented by a constraint, which expresses some partial information on the values of the variables involved in the computation. The concurrent execution of different processes, which interact through the common store, refines the partial information of...
Semantic Domains for Combining Probability and NonDeterminism
 ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE
, 2005
"... ..."
(Show Context)
Erratic Fudgets: A Semantic Theory for an Embedded Coordination Language
 SCIENCE OF COMPUTER PROGRAMMING
, 2003
"... The powerful abstraction mechanisms of functional programming languages provide the means to develop domainspecific programming languages within the language itself. Typically, this is realised by designing a set of combinators (higherorder reusable programs) for an application area, and by constr ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
The powerful abstraction mechanisms of functional programming languages provide the means to develop domainspecific programming languages within the language itself. Typically, this is realised by designing a set of combinators (higherorder reusable programs) for an application area, and by constructing individual applications by combining and coordinating individual combinators. This paper is concerned with a successful example of such an embedded programming language, namely Fudgets, a library of combinators for building graphical user interfaces in the lazy functional language Haskell. The Fudget library has been used to build a number of substantial applications, including a web browser and a proof editor interface to a proof checker for constructive type theory. This paper develops a semantic theory for the nondeterministic stream processors that are at the heart of the Fudget concept. The interaction of two features of stream processors makes the development of such a semantic theory problematic: (i) the sharing of computation provided by the lazy evaluation mechanism of the underlying host language, and (ii) the addition of nondeterministic choice needed to handle the natural concurrency that reactive applications entail We demonstrate that this combination of features in a higherorder functional language can be tamed to provide a tractable semantic theory and induction principles suitable for reasoning about contextual equivalence of Fudgets.
Algebraic Approaches to Nondeterminism  an Overview
 ACM Computing Surveys
, 1997
"... this paper was published as Walicki, M.A. and Meldal, S., 1995, Nondeterministic Operators in Algebraic Frameworks, Tehnical Report No. CSLTR95664, Stanford University ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
this paper was published as Walicki, M.A. and Meldal, S., 1995, Nondeterministic Operators in Algebraic Frameworks, Tehnical Report No. CSLTR95664, Stanford University
A Cook’s tour of the finitary nonwellfounded sets
 Invited Lecture at BCTCS
, 1988
"... It is a great pleasure to contribute this paper to a birthday volume for Dov. Dov and I arrived at imperial College at around the same time, and soon he, Tom Maibaum and I were embarked on a joint project, the Handbook of Logic in Computer Science. We obtained a generous advance from Oxford Universi ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
(Show Context)
It is a great pleasure to contribute this paper to a birthday volume for Dov. Dov and I arrived at imperial College at around the same time, and soon he, Tom Maibaum and I were embarked on a joint project, the Handbook of Logic in Computer Science. We obtained a generous advance from Oxford University Press, and a grant from the Alvey Programme, which allowed us to develop the Handbook in a rather unique, interactive way. We held regular meetings at Cosener’s House in Abingdon (a facility run by what was then the U.K. Science and Engineering Research Council), at which contributors would present their ideas and draft material for their chapters for discussion and criticism. Ideas for new chapters and the balance of the volumes were also discussed. Those were a remarkable series of meetings — a veritable education in themselves. I must confess that during this long process, I did occasionally wonder if it would ever terminate.... But the record shows that five handsome volumes were produced [6]. Moreover, I believe that the Handbook has proved to be a really valuable resource for students and researchers. It has been used as the basis for a number of summer schools. Many of the chapters have become standard references for their topics. In a field with rapidly changing fashions, most of the material has stood the test of time — thus
Descriptive and relative completeness of logics for higherorder functions
 ICALP (2), volume 4052 of Lecture Notes in Computer Science
, 2006
"... Abstract. This paper establishes a strong completeness property of compositional program logics for pure and imperative higherorder functions introduced in [18, 16, 17, 19, 3]. This property, called descriptive completeness, says that for each program there is an assertion fully describing the pro ..."
Abstract

Cited by 21 (10 self)
 Add to MetaCart
(Show Context)
Abstract. This paper establishes a strong completeness property of compositional program logics for pure and imperative higherorder functions introduced in [18, 16, 17, 19, 3]. This property, called descriptive completeness, says that for each program there is an assertion fully describing the program’s behaviour up to the standard observational semantics. This formula is inductively calculable from the program text alone. As a consequence we obtain the first relative completeness result for compositional logics of pure and imperative callbyvalue higherorder functions in the full type hierarchy. 1
Clausal Logic And Logic Programming In Algebraic Domains
 Information and Computation
, 2001
"... . We introduce a domaintheoretic foundation for disjunctive logic programming. This foundation is built on clausal logic, a representation of the Smyth powerdomain of any coherent algebraic dcpo. We establish the completeness of a resolution rule for inference in such a clausal logic; we introdu ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
. We introduce a domaintheoretic foundation for disjunctive logic programming. This foundation is built on clausal logic, a representation of the Smyth powerdomain of any coherent algebraic dcpo. We establish the completeness of a resolution rule for inference in such a clausal logic; we introduce a natural declarative semantics and a fixedpoint semantics for disjunctive logic programs, and prove their equivalence; finally, we apply our results to give both a syntax and semantics for default logic in any coherent algebraic dcpo. 1. Introduction Domain theory, as introduced by Scott in the 1970's, has many connections with logic. Such connections are usually made by extracting an appropriate language /syntax from a category of domains. To name a few examples, we have Abramsky's "domain theory in logical form" [Abr91], Scott's own representation of Scott domains as information systems [Sco82], extended to other domains by Zhang [Zha91], and Smyth's treatment of observable prope...