Results 1 
9 of
9
Analysis of Shellsort and related algorithms
 ESA ’96: Fourth Annual European Symposium on Algorithms
, 1996
"... This is an abstract of a survey talk on the theoretical and empirical studies that have been done over the past four decades on the Shellsort algorithm and its variants. The discussion includes: upper bounds, including linkages to numbertheoretic properties of the algorithm; lower bounds on Shellso ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
(Show Context)
This is an abstract of a survey talk on the theoretical and empirical studies that have been done over the past four decades on the Shellsort algorithm and its variants. The discussion includes: upper bounds, including linkages to numbertheoretic properties of the algorithm; lower bounds on Shellsort and Shellsortbased networks; averagecase results; proposed probabilistic sorting networks based on the algorithm; and a list of open problems. 1 Shellsort The basic Shellsort algorithm is among the earliest sorting methods to be discovered (by D. L. Shell in 1959 [36]) and is among the easiest to implement, as exhibited by the following C code for sorting an array a[l],..., a[r]: shellsort(itemType a[], int l, int r) { int i, j, h; itemType v;
Lower Bounds for Shellsort
 In Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science
, 1997
"... We show lower bounds on the worstcase complexity of Shellsort. In particular, we give a fairly simple proof of an \Omega\Gamma n lg 2 n=(lg lg n) 2 ) lower bound for the size of Shellsort sorting networks, for arbitrary increment sequences. We also show an identical lower bound for the running ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
(Show Context)
We show lower bounds on the worstcase complexity of Shellsort. In particular, we give a fairly simple proof of an \Omega\Gamma n lg 2 n=(lg lg n) 2 ) lower bound for the size of Shellsort sorting networks, for arbitrary increment sequences. We also show an identical lower bound for the running time of Shellsort algorithms, again for arbitrary increment sequences. Our lower bounds establish an almost tight tradeoff between the running time of a Shellsort algorithm and the length of the underlying increment sequence. Proposed running head: Lower Bounds for Shellsort. Contact author: Prof. Greg Plaxton, Department of Computer Science, University of Texas at Austin, Austin, Texas 787121188. 1 Introduction Shellsort is a classical sorting algorithm introduced by Shell in 1959 [15]. The algorithm is based on a sequence H = h 0 ; : : : ; hm\Gamma1 of positive integers called an increment sequence. An input file A = A[0]; : : : ; A[n \Gamma 1] of elements is sorted by performing an ...
A Lower Bound on the AverageCase Complexity of Shellsort
, 1999
"... We give a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for any incremental sequence is \Omega\Gamma pn 1+1=p ) for every p. The proof is an example of the use of Kolmogorov complexity (the incompr ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
We give a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for any incremental sequence is \Omega\Gamma pn 1+1=p ) for every p. The proof is an example of the use of Kolmogorov complexity (the incompressibility method) in the analysis of algorithms. 1 Introduction The question of a nontrivial general lower bound (or upper bound) on the average complexity of Shellsort (due to D.L. Shell [14]) has been open for about four decades [5, 13]. We present such a lower bound for ppass Shellsort for every p. Shellsort sorts a list of n elements in p passes using a sequence of increments h 1 ; : : : ; h p . In the kth pass the main list is divided in h k separate sublists of length dn=h k e, where the ith sublist consists of the elements at positions j, where j mod h k = i \Gamma 1, of the main list (i = 1; : : : ; h k ). Every sublist is sorted using a straightforward insertion sort. The effi...
The averagecase complexity of Shellsort
 LECTURE NOTES IN COMPUTER SCIENCE 1644
, 1999
"... We prove a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for 1 1+ any incremental sequence is Ω(pn p) for all p ≤ log n. Using similar arguments, we analyze the averagecase complexity of several oth ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
We prove a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for 1 1+ any incremental sequence is Ω(pn p) for all p ≤ log n. Using similar arguments, we analyze the averagecase complexity of several other sorting algorithms.
The worst case in Shellsort and related algorithms
 Journal of Algorithms
, 1993
"... Abstract. We show that sorting a sufficiently long list of length N using Shellsort with m increments (not necessarily decreasing) requires at least N 1+c/ √ m comparisons in the worst case, for some constant c> 0. For m ≤ (log N / log log N) 2 we obtain an upper bound of the same form. We also p ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We show that sorting a sufficiently long list of length N using Shellsort with m increments (not necessarily decreasing) requires at least N 1+c/ √ m comparisons in the worst case, for some constant c> 0. For m ≤ (log N / log log N) 2 we obtain an upper bound of the same form. We also prove that Ω(N(log N / log log N) 2) comparisons are needed regardless of the number of increments. Our approach is general enough to apply to other sorting algorithms, including Shakersort, for which an even stronger result is proved. 1.
method
"... Background: Although a variety of methods and expensive kits are available, molecular cloning can be a timeconsuming and frustrating process. Results: Here we report a highly simplified, reliable, and efficient PCRbased cloning technique to insert any DNA fragment into a plasmid vector or into a ge ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Background: Although a variety of methods and expensive kits are available, molecular cloning can be a timeconsuming and frustrating process. Results: Here we report a highly simplified, reliable, and efficient PCRbased cloning technique to insert any DNA fragment into a plasmid vector or into a gene (cDNA) in a vector at any desired position. With this method, the vector and insert are PCR amplified separately, with only 18 cycles, using a high fidelity DNA polymerase. The amplified insert has the ends with ~16base overlapping with the ends of the amplified vector. After DpnI digestion of the mixture of the amplified vector and insert to eliminate the DNA templates used in PCR reactions, the mixture is directly transformed into competent E. coli cells to obtain the desired clones. This technique has many advantages over other cloning methods. First, it does not need gel purification of the PCR product or linearized vector. Second, there is no need of any cloning kit or specialized enzyme for cloning. Furthermore, with reduced number of PCR cycles, it also decreases the chance of random mutations. In addition, this method is highly effective and reproducible. Finally, since this cloning method is also sequence independent, we demonstrated that it can be used for chimera construction, insertion, and multiple mutations spanning a stretch of DNA up to 120 bp.
Analysis of Sorting Algorithms by Kolmogorov Complexity  A Survey
, 2003
"... Recently, many results on the computational complexity of sorting algorithms were obtained using Kolmogorov complexity (the incompressibility method). Especially, the usually hard averagecase analysis is ammenable to this method. Here we survey such results about Bubblesort, Heapsort, Shellsort, ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Recently, many results on the computational complexity of sorting algorithms were obtained using Kolmogorov complexity (the incompressibility method). Especially, the usually hard averagecase analysis is ammenable to this method. Here we survey such results about Bubblesort, Heapsort, Shellsort, Dobosiewiczsort, Shakersort, and sorting with stacks and queues in sequential or parallel mode. Especially in the case of Shellsort the uses of Kolmogorov complexity surprisingly easily resolved problems that had stayed open for a long time despite strenuous attacks.
BOLYAI SOCIETY Entropy, Search, Complexity, pp. 209–232. MATHEMATICAL STUDIES, 16 Analysis of Sorting Algorithms by Kolmogorov Complexity
"... Recently, many results on the computational complexity of sorting algorithms were obtained using Kolmogorov complexity (the incompressibility method). Especially, the usually hard averagecase analysis is ammenable to this method. Here we survey such results about Bubblesort, Heapsort, Shellsort, Do ..."
Abstract
 Add to MetaCart
(Show Context)
Recently, many results on the computational complexity of sorting algorithms were obtained using Kolmogorov complexity (the incompressibility method). Especially, the usually hard averagecase analysis is ammenable to this method. Here we survey such results about Bubblesort, Heapsort, Shellsort, Dobosiewiczsort, Shakersort, and sorting with stacks and queues in sequential or parallel mode. Especially in the case of Shellsort the uses of Kolmogorov complexity surprisingly easily resolved problems that had stayed open for a long time despite strenuous attacks. 1.