Results 1 
2 of
2
A lineartime probabilistic counting algorithm for database applications
 ACM Transactions on Database Systems
, 1990
"... We present a probabilistic algorithm for counting the number of unique values in the presence of duplicates. This algorithm has O(q) time complexity, where q is the number of values including duplicates, and produces an estimation with an arbitrary accuracy prespecified by the user using only a smal ..."
Abstract

Cited by 92 (5 self)
 Add to MetaCart
We present a probabilistic algorithm for counting the number of unique values in the presence of duplicates. This algorithm has O(q) time complexity, where q is the number of values including duplicates, and produces an estimation with an arbitrary accuracy prespecified by the user using only a small amount of space. Traditionally, accurate counts of unique values were obtained by sorting, which has O(q log q) time complexity. Our technique, called linear counting, is based on hashing. We present a comprehensive theoretical and experimental analysis of linear counting. The analysis reveals an interesting result: A load factor (number of unique values/hash table size) much larger than 1.0 (e.g., 12) can be used for accurate estimation (e.g., 1 % of error). We present this technique with two important applications to database problems: namely, (1) obtaining the column cardinality (the number of unique values in a column of a relation) and (2) obtaining the join selectivity (the number of unique values in the join column resulting from an unconditional join divided by the number of unique join column values in the relation to he joined). These two parameters are important statistics that are used in relational query optimization and physical database design.
targeted integration in the distribution of the Metaviridae
, 2004
"... The electronic version of this article is the complete one and can be ..."