Results 1  10
of
163
Exact Indexing of Dynamic Time Warping
, 2002
"... The problem of indexing time series has attracted much research interest in the database community. Most algorithms used to index time series utilize the Euclidean distance or some variation thereof. However is has been forcefully shown that the Euclidean distance is a very brittle distance me ..."
Abstract

Cited by 258 (31 self)
 Add to MetaCart
The problem of indexing time series has attracted much research interest in the database community. Most algorithms used to index time series utilize the Euclidean distance or some variation thereof. However is has been forcefully shown that the Euclidean distance is a very brittle distance measure. Dynamic Time Warping (DTW) is a much more robust distance measure for time series, allowing similar shapes to match even if they are out of phase in the time axis.
Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases
 In proceedings of ACM SIGMOD Conference on Management of Data
, 2002
"... Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced d ..."
Abstract

Cited by 252 (28 self)
 Add to MetaCart
(Show Context)
Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced data with a multidimensional index structure. Many dimensionality reduction techniques have been proposed, including Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and the Discrete Wavelet Transform (DWT). In this work we introduce a new dimensionality reduction technique which we call Adaptive Piecewise Constant Approximation (APCA). While previous techniques (e.g., SVD, DFT and DWT) choose a common representation for all the items in the database that minimizes the global reconstruction error, APCA approximates each time series by a set of constant value segments' of varying lengths' such that their individual reconstruction errors' are minimal. We show how APCA can be indexed using a multidimensional index structure. We propose two distance measures in the indexed space that exploit the high fidelity of APCA for fast searching: a lower bounding Euclidean distance approximation, and a nonlower bounding, but very tight Euclidean distance approximation and show how they can support fast exact searchin& and even faster approximate searching on the same index structure. We theoretically and empirically compare APCA to all the other techniques and demonstrate its' superiority.
On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration
 SIGKDD'02
, 2002
"... ... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in ..."
Abstract

Cited by 237 (51 self)
 Add to MetaCart
... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in the case of classification and clustering, model accuracy in the case of segmentation) offer an amount of "improvement" that would have been completely dwarfed by the variance that would have been observed by testing on many real world datasets, or the variance that would have been observed by changing minor (unstated) implementation details. To illustrate our point
Discovering similar multidimensional trajectories
 In ICDE
, 2002
"... We investigate techniques for analysis and retrieval of object trajectories in a two or three dimensional space. Such kind of data usually contain a great amount of noise, that makes all previously used metrics fail. Therefore, here we formalize nonmetric similarity functions based on the Longest C ..."
Abstract

Cited by 188 (6 self)
 Add to MetaCart
(Show Context)
We investigate techniques for analysis and retrieval of object trajectories in a two or three dimensional space. Such kind of data usually contain a great amount of noise, that makes all previously used metrics fail. Therefore, here we formalize nonmetric similarity functions based on the Longest Common Subsequence (LCSS), which are very robust to noise and furthermore provide an intuitive notion of similarity between trajectories by giving more weight to the similar portions of the sequences. Stretching of sequences in time is allowed, as well as global translating of the sequences in space. Efficient approximate algorithms that compute these similarity measures are also provided. We compare these new methods to the widely used Euclidean and Time Warping distance functions (for real and synthetic data) and show the superiority of our approach, especially under the strong presence of noise. We prove a weaker version of the triangle inequality and employ it in an indexing structure to answer nearest neighbor queries. Finally, we present experimental results that validate the accuracy and efficiency of our approach. 1
StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time
 In VLDB
, 2002
"... Consider the problem of monitoring tens of thousands of time series data streams in an online fashion and making decisions based on them. In addition to single stream statistics such as average and standard deviation, we also want to find high correlations among all pairs of streams. A stock market ..."
Abstract

Cited by 178 (10 self)
 Add to MetaCart
(Show Context)
Consider the problem of monitoring tens of thousands of time series data streams in an online fashion and making decisions based on them. In addition to single stream statistics such as average and standard deviation, we also want to find high correlations among all pairs of streams. A stock market trader might use such a tool to spot arbitrage opportunities.
Probabilistic discovery of time series motifs
, 2003
"... Several important time series data mining problems reduce to the core task of finding approximately repeated subsequences in a longer time series. In an earlier work, we formalized the idea of approximately repeated subsequences by introducing the notion of time series motifs. Two limitations of thi ..."
Abstract

Cited by 130 (22 self)
 Add to MetaCart
(Show Context)
Several important time series data mining problems reduce to the core task of finding approximately repeated subsequences in a longer time series. In an earlier work, we formalized the idea of approximately repeated subsequences by introducing the notion of time series motifs. Two limitations of this work were the poor scalability of the motif discovery algorithm, and the inability to discover motifs in the presence of noise. Here we address these limitations by introducing a novel algorithm inspired by recent advances in the problem of pattern discovery in biosequences. Our algorithm is probabilistic in nature, but as we show empirically and theoretically, it can find time series motifs with very high probability even in the presence of noise or “don’t care ” symbols. Not only is the algorithm fast, but it is an anytime algorithm, producing likely candidate motifs almost immediately, and gradually improving the quality of results over time.
Robust and fast similarity search for moving object trajectories
 In Proc. ACM SIGMOD Int. Conf. on Management of Data
, 2005
"... An important consideration in similaritybased retrieval of moving object trajectories is the definition of a distance function. The existing distance functions are usually sensitive to noise, shifts and scaling of data that commonly occur due to sensor failures, errors in detection techniques, dis ..."
Abstract

Cited by 93 (14 self)
 Add to MetaCart
(Show Context)
An important consideration in similaritybased retrieval of moving object trajectories is the definition of a distance function. The existing distance functions are usually sensitive to noise, shifts and scaling of data that commonly occur due to sensor failures, errors in detection techniques, disturbance signals, and different sampling rates. Cleaning data to eliminate these is not always possible. In this paper, we introduce a novel distance function, Edit Distance on Real sequence (EDR) which is robust against these data imperfections. Analysis and comparison of EDR with other popular distance functions, such as Euclidean distance, Dynamic Time Warping (DTW), Edit distance with Real Penalty (ERP), and Longest Common Subsequences (LCSS), indicate that EDR is more robust than Euclidean distance, DTW and ERP, and it is on average 50% more accurate than LCSS. We also develop three pruning techniques to improve the retrieval efficiency of EDR and show that these techniques can be combined effectively in a search, increasing the pruning power significantly. The experimental results confirm the superior efficiency of the combined methods. 1.
Finding Motifs in Time Series
, 2002
"... The problem of efficiently locating previously known patterns in a time series database (i.e., query by content) has received much attention and may now largely be regarded as a solved problem. However, from a knowledge discovery viewpoint, a more interesting problem is the enumeration of previously ..."
Abstract

Cited by 83 (15 self)
 Add to MetaCart
(Show Context)
The problem of efficiently locating previously known patterns in a time series database (i.e., query by content) has received much attention and may now largely be regarded as a solved problem. However, from a knowledge discovery viewpoint, a more interesting problem is the enumeration of previously unknown, frequently occurring patterns. We call such patterns "motifs," because of their close analogy to their discrete counterparts in computation biology. An efficient motif discovery algorithm for time series would be useful as a tool for summarizing and visualizing massive time series databases. In addition, it could be used as a subroutine in various other data mining tasks, including the discovery of association rules, clustering and classification. In this work we carefully motivate, then introduce, a nontrivial definition of time series motifs. We propose an efficient algorithm to discover them, and we demonstrate the utility and efficiency of our approach on several real world datasets.
Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures
"... The last decade has witnessed a tremendous growths of interests in applications that deal with querying and mining of time series data. Numerous representation methods for dimensionality reduction and similarity measures geared towards time series have been introduced. Each individual work introduci ..."
Abstract

Cited by 69 (20 self)
 Add to MetaCart
(Show Context)
The last decade has witnessed a tremendous growths of interests in applications that deal with querying and mining of time series data. Numerous representation methods for dimensionality reduction and similarity measures geared towards time series have been introduced. Each individual work introducing a particular method has made specific claims and, aside from the occasional theoretical justifications, provided quantitative experimental observations. However, for the most part, the comparative aspects of these experiments were too narrowly focused on demonstrating the benefits of the proposed methods over some of the previously introduced ones. In order to provide a comprehensive validation, we conducted an extensive set of time series experiments reimplementing 8 different representation methods and 9 similarity measures and their variants, and testing their effectiveness on 38 time series data sets from a wide variety of application domains. In this paper, we give an overview of these different techniques and present our comparative experimental findings regarding their effectiveness. Our experiments have provided both a unified validation of some of the existing achievements, and in some cases, suggested that certain claims in the literature may be unduly optimistic. 1.
Making Timeseries Classification More Accurate Using Learned Constraints
 In proc. of SDM Int’l Conf
, 2004
"... It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly miti ..."
Abstract

Cited by 61 (18 self)
 Add to MetaCart
(Show Context)
It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly mitigates DTWs demanding CPU time has sparked a flurry of research activity. However, the technique and its many extensions still only allow DTW to be applied to moderately large datasets. In addition, almost all of the research on DTW has focused exclusively on speeding up its calculation; there has been little work done on improving its accuracy. In this work, we target the accuracy aspect of DTW performance and introduce a new framework that learns arbitrary constraints on the warping path of the DTW calculation. Apart from improving the accuracy of classification, our technique as a side effect speeds up DTW by a wide margin as well. We show the utility of our approach on datasets from diverse domains and demonstrate significant gains in accuracy and efficiency.