Results 11  20
of
2,289
Pricing with a Smile
 Risk Magazine
, 1994
"... prices as a function of volatility. If an option price is given by the market we can invert this relationship to get the implied volatility. If the model were perfect, this implied value would be the same for all option market prices, but reality shows this is not the case. Implied Black–Scholes vol ..."
Abstract

Cited by 251 (0 self)
 Add to MetaCart
prices as a function of volatility. If an option price is given by the market we can invert this relationship to get the implied volatility. If the model were perfect, this implied value would be the same for all option market prices, but reality shows this is not the case. Implied Black–Scholes volatilities strongly depend on the maturity and the strike of the European option under scrutiny. If the implied volatilities of atthemoney (ATM) options on the Nikkei 225 index are 20 % for a maturity of six months and 18 % for a maturity of one year, we are in the uncomfortable position of assuming that the Nikkei oscillates with a constant volatility of 20 % for six months but also oscillates with a constant volatility of 18 % for one year. It is easy to solve this paradox by allowing volatility to be timedependent, as Merton did (see Merton, 1973). The Nikkei would first exhibit an instantaneous volatility of 20 % and subsequently a lower one, computed by a forward relationship to accommodate the oneyear volatility. We now have a single process, compatible with the two option prices. From the term structure of implied volatilities we can infer a timedependent instantaneous volatility, because the former is the quadratic mean of the latter. The spot process S is then governed by the following stochastic differential equation: dS �rt () dt��() t dW
On estimating the expected return on the market  an exploratory investigation
 Journal of Financial Economics
, 1980
"... The expected market return is a number frequently required for the solution of many investment and corporate tinance problems, but by comparison with other tinancial variables, there has been little research on estimating this expected return. Current practice for estimating the expected market retu ..."
Abstract

Cited by 245 (1 self)
 Add to MetaCart
The expected market return is a number frequently required for the solution of many investment and corporate tinance problems, but by comparison with other tinancial variables, there has been little research on estimating this expected return. Current practice for estimating the expected market return adds the historical average realized excess market returns to the current observed interest rate. While this model explicitly reflects the dependence of the market return on the interest rate, it fails to account for the effect of changes in the level of market risk. Three models of equilibrium expected market returns which reflect this dependence are analyzed in this paper. Estimation procedures which incorporate the prior restriction that equilibrium expected excess returns on the market must be positive are derived and applied to return data for the period 19261978. The principal conclusions from this exploratory investigation are: (1) in estimating models of the expected market return, the nonnegativity restriction of the expected excess return should be explicitly included as part of the specification; (2) estimators which use realized returns should be adjusted for heteroscedasticity. 1.
A Markov Model for the Term Structure of Credit Risk Spreads
 Review of Financial Studies
, 1997
"... This article provides a Markov model for the term structure of credit risk spreads. The model is based on Jarrow and Turnbull (1995), with the bankruptcy process following a discrete state space Markov chain in credit ratings. The parameters of this process are easily estimated using observable data ..."
Abstract

Cited by 237 (12 self)
 Add to MetaCart
This article provides a Markov model for the term structure of credit risk spreads. The model is based on Jarrow and Turnbull (1995), with the bankruptcy process following a discrete state space Markov chain in credit ratings. The parameters of this process are easily estimated using observable data. This model is useful for pricing and hedging corporate debt with imbedded options, for pricing and hedging OTC derivatives with counterparty risk, for pricing and hedging (foreign) government bonds subject to default risk (e.g., municipal bonds), for pricing and hedging credit derivatives, and for risk management. This article presents a simple model for valuing risky debt that explicitly incorporates a firm's credit rating as an indicator of the likelihood of default. As such, this article presents an arbitragefree model for the term structure of credit risk spreads and their evolution through time. This model will prove useful for the pricing and hedging of corporate debt with We would like to thank John Tierney of Lehman Brothers for providing the bond index price data, and Tal Schwartz for computational assistance. We would also like to acknowledge helpful comments received from an anonymous referee. Send all correspondence to Robert A. Jarrow, Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853. The Review of Financial Studies Summer 1997 Vol. 10, No. 2, pp. 481523 1997 The Review of Financial Studies 08939454/97/$1.50 imbedded options, for the pricing and hedging of OTC derivatives with counterparty risk, for the pricing and hedging of (foreign) government bonds subject to default risk (e.g., municipal bonds), and for the pricing and hedging of credit derivatives (e.g. credit sensitive notes and spread adjusted notes). This model can also...
The Determinants of Credit Spread Changes
, 2001
"... Using dealer’s quotes and transactions prices on straight industrial bonds, we investigate the determinants of credit spread changes. Variables that should in theory determine credit spread changes have rather limited explanatory power. Further, the residuals from this regression are highly crossco ..."
Abstract

Cited by 224 (2 self)
 Add to MetaCart
Using dealer’s quotes and transactions prices on straight industrial bonds, we investigate the determinants of credit spread changes. Variables that should in theory determine credit spread changes have rather limited explanatory power. Further, the residuals from this regression are highly crosscorrelated, and principal components analysis implies they are mostly driven by a single common factor. Although we consider several macroeconomic and financial variables as candidate proxies, we cannot explain this common systematic component. Our results suggest that monthly credit spread changes are principally driven by local supply0 demand shocks that are independent of both creditrisk factors and standard proxies for liquidity.
An Analytic Derivation of the Cost of Deposit Insurance and Loan Guarantees: An Application of Modern Option Pricing Theory
 Journal of Banking and Finance
, 1977
"... It is not uncommon in the arrangement of a loan to include as part of the financial package a guarantee of the loan by a third party. Examples are guarantees by a parent company of loans made to its subsidiaries or government guarantees of loans made to private corporations. Also included would be g ..."
Abstract

Cited by 217 (2 self)
 Add to MetaCart
It is not uncommon in the arrangement of a loan to include as part of the financial package a guarantee of the loan by a third party. Examples are guarantees by a parent company of loans made to its subsidiaries or government guarantees of loans made to private corporations. Also included would be guarantees of bank deposits by the Federal Deposit Insurance Corporation. As with other forms of insurance, the issuing of a guarantee imposes a liability or cost on the guarantor. In this paper, a formula is derived to evaluate this cost. The method used is to demonstrate an isomorphic correspondence between loan guarantees and common stock put options, and then to use the well developed theory of option pricing to derive the formula. 1.
The JumpRisk Premia Implicit in Options: Evidence from an Integrated TimeSeries Study
 Journal of Financial Economics
"... Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more promi ..."
Abstract

Cited by 210 (1 self)
 Add to MetaCart
Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more prominent during volatile markets. This form of jumprisk premia is important not only in reconciling the dynamics implied by the joint data, but also in explaining the volatility “smirks” of crosssectional options data.
Explaining the rate spread on corporate bonds
 Journal of Finance
, 2001
"... The purpose of this article is to explain the spread between spot rates on corporate and government bonds. We find that the spread can be explained in terms of three elements: (1) compensation for expected default of corporate bonds (2) compensation for state taxes since holders of corporate bonds p ..."
Abstract

Cited by 207 (3 self)
 Add to MetaCart
The purpose of this article is to explain the spread between spot rates on corporate and government bonds. We find that the spread can be explained in terms of three elements: (1) compensation for expected default of corporate bonds (2) compensation for state taxes since holders of corporate bonds pay state taxes while holders of government bonds do not, and (3) compensation for the additional systematic risk in corporate bond returns relative to government bond returns. The systematic nature of corporate bond return is shown by relating that part of the spread which is not due to expected default or taxes to a set of variables which have been shown to effect risk premiums in stock markets Empirical estimates of the size of each of these three components are provided in the paper. We stress the tax effects because it has been ignored in all previous studies of corporate bonds. 1
The Variance Gamma Process and Option Pricing.
 European Finance Review
, 1998
"... : A three parameter stochastic process, termed the variance gamma process, that generalizes Brownian motion is developed as a model for the dynamics of log stock prices. The process is obtained by evaluating Brownian motion with drift at a random time given by a gamma process. The two additional par ..."
Abstract

Cited by 197 (26 self)
 Add to MetaCart
: A three parameter stochastic process, termed the variance gamma process, that generalizes Brownian motion is developed as a model for the dynamics of log stock prices. The process is obtained by evaluating Brownian motion with drift at a random time given by a gamma process. The two additional parameters are the drift of the Brownian motion and the volatility of the time change. These additional parameters provide control over the skewness and kurtosis of the return distribution. Closed forms are obtained for the return density and the prices of European options. The statistical and risk neutral densities are estimated for data on the S&P500 Index and the prices of options on this Index. It is observed that the statistical density is symmetric with some kurtosis, while the risk neutral density is negatively skewed with a larger kurtosis. The additional parameters also correct for pricing biases of the Black Scholes model that is a parametric special case of the option pricing model d...