Results 1  10
of
27
A general limit theorem for recursive algorithms and combinatorial structures
 ANN. APPL. PROB
, 2004
"... Limit laws are proven by the contraction method for random vectors of a recursive nature as they arise as parameters of combinatorial structures such as random trees or recursive algorithms, where we use the Zolotarev metric. In comparison to previous applications of this method, a general transfer ..."
Abstract

Cited by 54 (25 self)
 Add to MetaCart
Limit laws are proven by the contraction method for random vectors of a recursive nature as they arise as parameters of combinatorial structures such as random trees or recursive algorithms, where we use the Zolotarev metric. In comparison to previous applications of this method, a general transfer theorem is derived which allows us to establish a limit law on the basis of the recursive structure and to use the asymptotics of the first and second moments of the sequence. In particular, a general asymptotic normality result is obtained by this theorem which typically cannot be handled by the more common ℓ2 metrics. As applications we derive quite automatically many asymptotic limit results ranging from the size of tries or mary search trees and path lengths in digital structures to mergesort and parameters of random recursive trees, which were previously shown by different methods one by one. We also obtain a related local density approximation result as well as a global approximation result. For the proofs of these results we establish that a smoothed density distance as well as a smoothed total variation distance can be estimated from above by the Zolotarev metric, which is the main tool in this article.
Phase Change of Limit Laws in the Quicksort Recurrence Under Varying Toll Functions
, 2001
"... We characterize all limit laws of the quicksort type random variables defined recursively by Xn = X In + X # n1In + Tn when the "toll function" Tn varies and satisfies general conditions, where (Xn ), (X # n ), (I n , Tn ) are independent, Xn . . . , n 1}. When the "toll function" Tn ..."
Abstract

Cited by 46 (19 self)
 Add to MetaCart
We characterize all limit laws of the quicksort type random variables defined recursively by Xn = X In + X # n1In + Tn when the "toll function" Tn varies and satisfies general conditions, where (Xn ), (X # n ), (I n , Tn ) are independent, Xn . . . , n 1}. When the "toll function" Tn (cost needed to partition the original problem into smaller subproblems) is small (roughly lim sup n## log E(Tn )/ log n 1/2), Xn is asymptotically normally distributed; nonnormal limit laws emerge when Tn becomes larger. We give many new examples ranging from the number of exchanges in quicksort to sorting on broadcast communication model, from an insitu permutation algorithm to tree traversal algorithms, etc.
On a multivariate contraction method for random recursive structures with applications to Quicksort
, 2001
"... The contraction method for recursive algorithms is extended to the multivariate analysis of vectors of parameters of recursive structures and algorithms. We prove a general multivariate limit law which also leads to an approach to asymptotic covariances and correlations of the parameters. As an appl ..."
Abstract

Cited by 30 (16 self)
 Add to MetaCart
The contraction method for recursive algorithms is extended to the multivariate analysis of vectors of parameters of recursive structures and algorithms. We prove a general multivariate limit law which also leads to an approach to asymptotic covariances and correlations of the parameters. As an application the asymptotic correlations and a bivariate limit law for the number of key comparisons and exchanges of medianof(2t + 1) Quicksort is given. Moreover, for the Quicksort programs analyzed by Sedgewick the exact order of the standard deviation and a limit law follow, considering all the parameters counted by Sedgewick.
Singularity Analysis, Hadamard Products, and Tree Recurrences
, 2003
"... We present a toolbox for extracting asymptotic information on the coecients of combinatorial generating functions. This toolbox notably includes a treatment of the eect of Hadamard products on singularities in the context of the complex Tauberian technique known as singularity analysis. As a consequ ..."
Abstract

Cited by 28 (9 self)
 Add to MetaCart
We present a toolbox for extracting asymptotic information on the coecients of combinatorial generating functions. This toolbox notably includes a treatment of the eect of Hadamard products on singularities in the context of the complex Tauberian technique known as singularity analysis. As a consequence, it becomes possible to unify the analysis of a number of divideandconquer algorithms, or equivalently random tree models, including several classical methods for sorting, searching, and dynamically managing equivalence relations.
Quickselect and Dickman function
 Combinatorics, Probability and Computing
, 2000
"... We show that the limiting distribution of the number of comparisons used by Hoare's quickselect algorithm when given a random permutation of n elements for finding the mth smallest element, where m = o(n), is the Dickman function. The limiting distribution of the number of exchanges is also derived ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
We show that the limiting distribution of the number of comparisons used by Hoare's quickselect algorithm when given a random permutation of n elements for finding the mth smallest element, where m = o(n), is the Dickman function. The limiting distribution of the number of exchanges is also derived. 1 Quickselect Quickselect is one of the simplest and e#cient algorithms in practice for finding specified order statistics in a given sequence. It was invented by Hoare [19] and uses the usual partitioning procedure of quicksort: choose first a partitioning key, say x; regroup the given sequence into two parts corresponding to elements whose values are less than and larger than x, respectively; then decide, according to the size of the smaller subgroup, which part to continue recursively or to stop if x is the desired order statistics; see Figure 1 for an illustration in terms of binary search trees. For more details, see Guibas [15] and Mahmoud [26]. This algorithm , although ine#cient in the worst case, has linear mean when given a sequence of n independent and identically distributed continuous random variables, or equivalently, when given a random permutation of n elements, where, here and throughout this paper, all n! permutations are equally likely. Let C n,m denote the number of comparisons used by quickselect for finding the mth smallest element in a random permutation, where the first partitioning stage uses n 1 comparisons. Knuth [23] was the first to show, by some di#erencing argument, that E(C n,m ) = 2 (n + 3 + (n + 1)H n (m + 2)Hm (n + 3 m)H n+1m ) , n, where Hm = 1#k#m k 1 . A more transparent asymptotic approximation is E(C n,m ) (#), (#) := 2 #), # Part of the work of this author was done while he was visiting School of C...
TurboSMARTS: Accurate microarchitecture simulation sampling in minutes
 SIGMETRICS Performance Evaluation Review
, 2005
"... Recent research proposes accelerating processor microarchitecture simulation through statistical sampling. These proposals advocate detailed microarchitecture simulation of a large number (e.g., 10,000) of brief (e.g., 1000instruction) execution windows to minimize instructions simulated and achiev ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
Recent research proposes accelerating processor microarchitecture simulation through statistical sampling. These proposals advocate detailed microarchitecture simulation of a large number (e.g., 10,000) of brief (e.g., 1000instruction) execution windows to minimize instructions simulated and achieve high confidence in performance estimates. Unfortunately, correct measurement of such short execution windows requires highly accurate model state before each measurement. Prior techniques construct this state by continuously warming large microarchitectural structures (e.g., caches and the branch predictor) while emulating billions of instructions between measurements in an approach called functional warming. Although current sampling proposals require only minutes of detailed simulation, functional warming increases total turnaround time to hours.
The oscillatory distribution of distances in random tries
 ANNALS OF APPLIED PROBABILITY
, 2005
"... We investigate ∆n, the distance between randomly selected pairs of nodes among n keys in a random trie, which is a kind of digital tree. Analytical techniques, such as the Mellin transform and an excursion between poissonization and depoissonization, capture small fluctuations in the mean and varian ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
We investigate ∆n, the distance between randomly selected pairs of nodes among n keys in a random trie, which is a kind of digital tree. Analytical techniques, such as the Mellin transform and an excursion between poissonization and depoissonization, capture small fluctuations in the mean and variance of these random distances. The mean increases logarithmically in the number of keys, but curiously enough the variance remains O(1), as n → ∞. It is demonstrated that the centered random variable ∆ ∗ n = ∆n − ⌊2log 2 n ⌋ does not have a limit distribution, but rather oscillates between two distributions.
On the Number of Heaps and the Cost of Heap Construction
, 2001
"... Heaps constitute a wellknown data structure allowing the implementation of an e#cient O(n log n) sorting algorithm as well as the design of fast priority queues. Although heaps have been known for long, their combinatorial properties are still partially worked out: exact summation formulae have be ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
Heaps constitute a wellknown data structure allowing the implementation of an e#cient O(n log n) sorting algorithm as well as the design of fast priority queues. Although heaps have been known for long, their combinatorial properties are still partially worked out: exact summation formulae have been stated, but most of the asymptotic behaviors are still unknown. In this paper, we present a number of general (not restricting to special subsequences) asymptotic results that give insight on the di#culties encountered in the asymptotic study of the number of heaps of a given size and of the cost of heap construction. In particular we exhibit the influence of arithmetic functions in the apparently chaotic behavior of these quantities. It is also shown that the distribution function of the cost of heap construction using Floyd's algorithm and other variants is asymptotically normal. 1
Analysis in Distribution of Two Randomized Algorithms for Finding the Maximum in a Broadcast Communication Model
, 2002
"... The limit laws of three cost measures are derived of two algorithms for finding the maximum in a singlechannel broadcast communication model. Both algorithms use coin flips and comparisons. Besides the ubiquitous normal limit law, the Dickman distribution also appears in a natural way. The method o ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
The limit laws of three cost measures are derived of two algorithms for finding the maximum in a singlechannel broadcast communication model. Both algorithms use coin flips and comparisons. Besides the ubiquitous normal limit law, the Dickman distribution also appears in a natural way. The method of proof proceeds along the line via the method of moments and the "asymptotic transfers", which roughly bridges the asymptotics of the "conquering cost of the subproblems" and that of the total cost. Such a general approach has proved very fruitful for a number of problems in the analysis of recursive algorithms. 1