Results 1  10
of
26
The TPTP Problem Library
, 1999
"... This report provides a detailed description of the TPTP Problem Library for automated theorem proving systems. The library is available via Internet, and forms a common basis for development of and experimentation with automated theorem provers. This report provides: ffl the motivations for buildin ..."
Abstract

Cited by 100 (6 self)
 Add to MetaCart
This report provides a detailed description of the TPTP Problem Library for automated theorem proving systems. The library is available via Internet, and forms a common basis for development of and experimentation with automated theorem provers. This report provides: ffl the motivations for building the library; ffl a discussion of the inadequacies of previous problem collections, and how these have been resolved in the TPTP; ffl a description of the library structure, including overview information; ffl descriptions of supplementary utility programs; ffl guidelines for obtaining and using the library; Contents 1 Introduction 2 1.1 Previous Problem Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 What is Required? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Inside the TPTP 6 2.1 The TPTP Domain Structure . . . . . . . . . . . . . . . . . . . . . ...
Set theory for verification: I. From foundations to functions
 J. Auto. Reas
, 1993
"... A logic for specification and verification is derived from the axioms of ZermeloFraenkel set theory. The proofs are performed using the proof assistant Isabelle. Isabelle is generic, supporting several different logics. Isabelle has the flexibility to adapt to variants of set theory. Its higherord ..."
Abstract

Cited by 46 (18 self)
 Add to MetaCart
A logic for specification and verification is derived from the axioms of ZermeloFraenkel set theory. The proofs are performed using the proof assistant Isabelle. Isabelle is generic, supporting several different logics. Isabelle has the flexibility to adapt to variants of set theory. Its higherorder syntax supports the definition of new binding operators. Unknowns in subgoals can be instantiated incrementally. The paper describes the derivation of rules for descriptions, relations and functions, and discusses interactive proofs of Cantor’s Theorem, the Composition of Homomorphisms challenge [9], and Ramsey’s Theorem [5]. A generic proof assistant can stand up against provers dedicated to particular logics. Key words. Isabelle, set theory, generic theorem proving, Ramsey’s Theorem,
MBase: Representing Knowledge and Context for the Integration of Mathematical Software Systems
, 2000
"... In this article we describe the data model of the MBase system, a webbased, ..."
Abstract

Cited by 41 (11 self)
 Add to MetaCart
In this article we describe the data model of the MBase system, a webbased,
Analytica  A Theorem Prover for Mathematica
 The Mathematica Journal
, 1993
"... Analytica is an automatic theorem prover for theorems in elementary analysis. The prover is written in Mathematica language and runs in the Mathematica environment. The goal of the project is to use a powerful symbolic computation system to prove theorems that are beyond the scope of previous automa ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
Analytica is an automatic theorem prover for theorems in elementary analysis. The prover is written in Mathematica language and runs in the Mathematica environment. The goal of the project is to use a powerful symbolic computation system to prove theorems that are beyond the scope of previous automatic theorem provers. The theorem prover is also able to guarantee the correctness of certain steps that are made by the symbolic computation system and therefore prevent common errors like division by a symbolic expression that could be zero. In this paper we describe the structure of Analytica and explain the main techniques that it uses to construct proofs. We have tried to make the paper as selfcontained as possible so that it will be accessible to a wide audience of potential users. We illustrate the power of our theorem prover by several nontrivial examples including the basic properties of the stereographic projection and a series of three lemmas that lead to a proof of Weierstrass's...
Mechanizing set theory: Cardinal arithmetic and the axiom of choice
 Journal of Automated Reasoning
, 1996
"... Abstract. Fairly deep results of ZermeloFrænkel (ZF) set theory have been mechanized using the proof assistant Isabelle. The results concern cardinal arithmetic and the Axiom of Choice (AC). A key result about cardinal multiplication is κ ⊗ κ = κ, where κ is any infinite cardinal. Proving this resu ..."
Abstract

Cited by 16 (9 self)
 Add to MetaCart
Abstract. Fairly deep results of ZermeloFrænkel (ZF) set theory have been mechanized using the proof assistant Isabelle. The results concern cardinal arithmetic and the Axiom of Choice (AC). A key result about cardinal multiplication is κ ⊗ κ = κ, where κ is any infinite cardinal. Proving this result required developing theories of orders, orderisomorphisms, order types, ordinal arithmetic, cardinals, etc.; this covers most of Kunen, Set Theory, Chapter I. Furthermore, we have proved the equivalence of 7 formulations of the Wellordering Theorem and 20 formulations of AC; this covers the first two chapters of Rubin and Rubin, Equivalents of the Axiom of Choice, and involves highly technical material. The definitions used in the proofs are
Knowledge Representation and Classical Logic
"... Mathematical logicians had developed the art of formalizing declarative knowledge long before the advent of the computer age. But they were interested primarily in formalizing mathematics. Because of the important role of nonmathematical knowledge in AI, their emphasis was too narrow from the perspe ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
Mathematical logicians had developed the art of formalizing declarative knowledge long before the advent of the computer age. But they were interested primarily in formalizing mathematics. Because of the important role of nonmathematical knowledge in AI, their emphasis was too narrow from the perspective of knowledge representation, their formal languages were not sufficiently expressive. On the other hand, most logicians were not concerned about the possibility of automated reasoning; from the perspective of knowledge representation, they were often too generous in the choice of syntactic constructs. In spite of these differences, classical mathematical logic has exerted significant influence on knowledge representation research, and it is appropriate to begin this handbook with a discussion of the relationship between these fields. The language of classical logic that is most widely used in the theory of knowledge representation is the language of firstorder (predicate) formulas. These are the formulas that John McCarthy proposed to use for representing declarative knowledge in his advice taker paper [176], and Alan Robinson proposed to prove automatically using resolution [236]. Propositional logic is, of course, the most important subset of firstorder logic; recent
A Set Theory with Support for Partial Functions
 STUDIA LOGICA
, 2000
"... Partial functions can be easily represented in set theory as certain sets of ordered pairs. However, classical set theory provides no special machinery for reasoning about partial functions. For instance, there is no direct way of handling the application of a function to an argument outside its dom ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Partial functions can be easily represented in set theory as certain sets of ordered pairs. However, classical set theory provides no special machinery for reasoning about partial functions. For instance, there is no direct way of handling the application of a function to an argument outside its domain as in partial logic. There is also no utilization of lambdanotation and sorts or types as in type theory. This paper introduces a version of vonNeumannBernaysGödel set theory for reasoning about sets, proper classes, and partial functions represented as classes of ordered pairs. The underlying logic of the system is a partial firstorder logic, so classvalued terms may be nondenoting. Functions can be specified using lambdanotation, and reasoning about the application of functions to arguments is facilitated using sorts similar to those employed in the logic of the imps Interactive Mathematical Proof System. The set theory is intended to serve as a foundation for mechanized mathematics systems.
An Equational ReEngineering of Set Theories
 Automated Deduction in Classical and NonClassical Logics, LNCS 1761 (LNAI
, 1998
"... New successes in dealing with set theories by means of stateoftheart theoremprovers may ensue from terse and concise axiomatizations, such as can be moulded in the framework of the (fully equational) TarskiGivant map calculus. In this paper we carry out this task in detail, setting the ground fo ..."
Abstract

Cited by 6 (6 self)
 Add to MetaCart
New successes in dealing with set theories by means of stateoftheart theoremprovers may ensue from terse and concise axiomatizations, such as can be moulded in the framework of the (fully equational) TarskiGivant map calculus. In this paper we carry out this task in detail, setting the ground for a number of experiments. Key words: Set theory, relation algebras, firstorder theoremproving, algebraic logic. 1 Introduction Like other mature fields of mathematics, Set Theory deserves sustained efforts that bring to light richer and richer decidable fragments of it [5], general inference rules for reasoning in it [23, 2], effective proof strategies based on its domainknowledge, and so forth. Advances in this specialized area of automated reasoning tend, in spite of their steadiness, to be slow compared to the overall progress in the field. Many experiments with set theories have hence been carried out with standard theoremproving systems. Still today such experiments pose consider...
Map calculus: Initial application scenarios and experiments based on Otter
, 1998
"... Properties of a few familiar structures (natural numbers, nested lists, lattices) are formally specified in TarskiGivant's map calculus, with the aim of bringing to light new translation techniques that may bridge the gap between firstorder predicate calculus and the map calculus. It is also highl ..."
Abstract

Cited by 6 (6 self)
 Add to MetaCart
Properties of a few familiar structures (natural numbers, nested lists, lattices) are formally specified in TarskiGivant's map calculus, with the aim of bringing to light new translation techniques that may bridge the gap between firstorder predicate calculus and the map calculus. It is also highlighted to what extent a stateoftheart theoremprover for firstorder logic, namely Otter, can be exploited not only to emulate, but also to reason about, map calculus. 3 1 Introduction Everybody remembers that Boole's Laws of thought (1854), Frege's Begriffsschrift (1879), and the WhiteheadRussell's Principia Mathematica (1910) have been three major milestones in the development of contemporary logic (cf. [3, 8, 15, 4]). Only a few people are aware that very important prePrincipia milestones were laid down by C.S. Peirce and E. Schroder and culminated in the monumental work [11, 12] on the Algebra der Logik . The "rather capricious line of historical development" of the algebraic for...