Results 1  10
of
193
Constraint Logic Programming: A Survey
"... Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in differe ..."
Abstract

Cited by 771 (23 self)
 Add to MetaCart
Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in different areas of applications. In this survey of CLP, a primary goal is to give a systematic description of the major trends in terms of common fundamental concepts. The three main parts cover the theory, implementation issues, and programming for applications.
Bilattices and the Semantics of Logic Programming
, 1989
"... Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap's fourvalued logic, based on classical twovalued logic. Among other examples are those based on finite manyvalued logics, and on probabili ..."
Abstract

Cited by 380 (13 self)
 Add to MetaCart
Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap's fourvalued logic, based on classical twovalued logic. Among other examples are those based on finite manyvalued logics, and on probabilistic valued logic. A fixed point semantics is developed for logic programming, allowing any bilattice as the space of truth values. The mathematics is little more complex than in the classical twovalued setting, but the result provides a natural semantics for distributed logic programs, including those involving confidence factors. The classical twovalued and the Kripke/Kleene threevalued semantics become special cases, since the logics involved are natural sublogics of Belnap's logic, the logic given by the simplest bilattice. 1 Introduction Often useful information is spread over a number of sites ("Does anybody know, did Willie wear a hat when he left this morning?") that can be speci...
Logic Programming and Negation: A Survey
 JOURNAL OF LOGIC PROGRAMMING
, 1994
"... We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them. ..."
Abstract

Cited by 245 (8 self)
 Add to MetaCart
We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them.
Logic Programming and Knowledge Representation
 Journal of Logic Programming
, 1994
"... In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and sh ..."
Abstract

Cited by 224 (21 self)
 Add to MetaCart
In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and show how each of the added features extends the representational power of the language.
The Alternating Fixpoint of Logic Programs with Negation
, 1995
"... The alternating fixpoint of a logic program with negation is defined constructively. The underlying idea is monotonically to build up a set of negative conclusions until the least fixpoint is reached, using a transformation related to the one that defines stable models. From a fixed set of negative ..."
Abstract

Cited by 208 (2 self)
 Add to MetaCart
The alternating fixpoint of a logic program with negation is defined constructively. The underlying idea is monotonically to build up a set of negative conclusions until the least fixpoint is reached, using a transformation related to the one that defines stable models. From a fixed set of negative conclusions, the positive conclusions follow (without deriving any further negative ones), by traditional Horn clause semantics. The union of positive and negative conclusions is called the alternating xpoint partial model. The name "alternating" was chosen because the transformation runs in two passes; the first pass transforms an underestimate of the set of negative conclusions into an (intermediate) overestimate; the second pass transforms the overestimate into a new underestimate; the composition of the two passes is monotonic. The principal contributions of this work are (1) that the alternating fixpoint partial model is identical to the wellfounded partial model, and (2) that alternating xpoint logic is at least as expressive as xpoint logic on all structures. Also, on finite structures, fixpoint logic is as expressive as alternating fixpoint logic.
Stable Semantics for Disjunctive Programs
 New Generation Computing
, 1991
"... We introduce the stable model semantics for disjunctive logic programs and deductive databases, which generalizes the stable model semantics, defined earlier for normal (i.e., nondisjunctive) programs. Depending on whether only total (2valued) or all partial (3valued) models are used we obtain th ..."
Abstract

Cited by 163 (2 self)
 Add to MetaCart
We introduce the stable model semantics for disjunctive logic programs and deductive databases, which generalizes the stable model semantics, defined earlier for normal (i.e., nondisjunctive) programs. Depending on whether only total (2valued) or all partial (3valued) models are used we obtain the disjunctive stable semantics or the partial disjunctive stable semantics, respectively. The proposed semantics are shown to have the following properties: ffl For normal programs, the disjunctive (respectively, partial disjunctive) stable semantics coincides with the stable (respectively, partial stable) semantics. ffl For normal programs, the partial disjunctive stable semantics also coincides with the wellfounded semantics. ffl For locally stratified disjunctive programs both (total and partial) disjunctive stable semantics coincide with the perfect model semantics. ffl The partial disjunctive stable semantics can be generalized to the class of all disjunctive logic programs. ffl B...
WellFounded Semantics Coincides with ThreeValued Stable Semantics
 Fundamenta Informaticae
, 1990
"... We introduce 3valued stable models which are a natural generalization of standard (2valued) stable models. We show that every logic program P has at least one 3valued stable model and that the wellfounded model of any program P [VGRS90] coincides with the smallest 3valued stable model of P. We c ..."
Abstract

Cited by 139 (17 self)
 Add to MetaCart
We introduce 3valued stable models which are a natural generalization of standard (2valued) stable models. We show that every logic program P has at least one 3valued stable model and that the wellfounded model of any program P [VGRS90] coincides with the smallest 3valued stable model of P. We conclude that the wellfounded semantics of an arbitrary logic program coincides with the 3valued stable model semantics. The 3valued stable semantics is closely related to nonmonotonic formalisms in AI. Namely, every program P can be translated into a suitable autoepistemic (resp. default) theory P so that the 3valued stable semantics of P coincides with the (3valued) autoepistemic (resp. default) semantics of P . Similar results hold for circumscription and CWA. Moreover, it can be shown that the 3valued stable semantics has a natural extension to the class of all disjunctive logic programs and deductive databases. The author acknowledges support from the National Science Foundat...
Every Logic Program Has a Natural Stratification And an Iterated Least Fixed Point Model (Extended Abstract)
, 1989
"... 1 Introduction The perfect model semantics [ABW88, VG89b, Prz88a, Prz89b] provides an attractive alternative to the traditionally used semantics of logic programs based on Clark's completion of the program [Cla78, Llo84, Fit85, Kun87]. Perfect models are minimal models of the program, which can be ..."
Abstract

Cited by 137 (12 self)
 Add to MetaCart
1 Introduction The perfect model semantics [ABW88, VG89b, Prz88a, Prz89b] provides an attractive alternative to the traditionally used semantics of logic programs based on Clark's completion of the program [Cla78, Llo84, Fit85, Kun87]. Perfect models are minimal models of the program, which can be equivalently described as iterated least fixed points of natural operators [ABW88, VG89b], as iterated least models of the program [ABW88, VG89b] or as preferred models with respect to a natural priority relation [Prz88a, Prz89b]. As a result, the perfect model semantics is not only very intuitive, but it also has been proven equivalent to suitable forms of all four major formalizations of nonmonotonic reasoning in AI (see [Prz88b]) and is used in existing database [Zan88] and truth maintenance systems. Additionally, the perfect model semantics eliminates some serious drawbacks of Clark's semantics [Prz89b] and admits a natural sound and complete procedural mechanism, called SLSresolution [...
Negation and Constraint Logic Programming
, 1995
"... Almost all constraint logic programming systems include negation, yet nowhere has a sound operational model for negation in CLP been discussed. The SLDNF approach of only allowing ground negative subgoals to execute is very restrictive in constraint logic programming where most variables appearing i ..."
Abstract

Cited by 120 (2 self)
 Add to MetaCart
Almost all constraint logic programming systems include negation, yet nowhere has a sound operational model for negation in CLP been discussed. The SLDNF approach of only allowing ground negative subgoals to execute is very restrictive in constraint logic programming where most variables appearing in a derivation never become ground. By describing a scheme for constructive negation in constraint logic programming we give a sound and complete operational model for negation in these languages. Constructive negation was first formulated for logic programming in the Herbrand Universe and involves introducing disequality constraints. Constraint logic programming thus provides a much more natural framework for describing constructive negation. In this paper we describe a framework for constructive negation for constraint logic programming over arbitrary structures which is sound and complete with respect to the threevalued consequences of the completion of a program. Through this descriptio...