Results 11  20
of
2,639
MLESAC: A New Robust Estimator with Application to Estimating Image Geometry
 Computer Vision and Image Understanding
, 2000
"... A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solu ..."
Abstract

Cited by 249 (9 self)
 Add to MetaCart
A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solutions, but chooses the solution that maximizes the likelihood rather than just the number of inliers. The second part of the algorithm is a general purpose method for automatically parameterizing these relations, using the output of MLESAC. A difficulty with multiview image relations is that there are often nonlinear constraints between the parameters, making optimization a difficult task. The parameterization method overcomes the difficulty of nonlinear constraints and conducts a constrained optimization. The method is general and its use is illustrated for the estimation of fundamental matrices, image–image homographies, and quadratic transformations. Results are given for both synthetic and real images. It is demonstrated that the method gives results equal or superior to those of previous approaches. c ○ 2000 Academic Press 1.
View morphing
 In Computer Graphics (SIGGRAPH’96
, 1996
"... Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple ex ..."
Abstract

Cited by 236 (20 self)
 Add to MetaCart
Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple extension to image morphing that correctly handles 3D projective camera and scene transformations. The technique, called view morphing, works by prewarping two images prior to computing a morph and then postwarping the interpolated images. Because no knowledge of 3D shape is required, the technique may be applied to photographs and drawings, as well as rendered scenes. The ability to synthesize changes both in viewpoint and image structure affords a wide variety of interesting 3D effects via simple image transformations.
The development and comparison of robust methods for estimating the fundamental matrix
 International Journal of Computer Vision
, 1997
"... Abstract. This paper has two goals. The first is to develop a variety of robust methods for the computation of the Fundamental Matrix, the calibrationfree representation of camera motion. The methods are drawn from the principal categories of robust estimators, viz. case deletion diagnostics, Mest ..."
Abstract

Cited by 225 (10 self)
 Add to MetaCart
Abstract. This paper has two goals. The first is to develop a variety of robust methods for the computation of the Fundamental Matrix, the calibrationfree representation of camera motion. The methods are drawn from the principal categories of robust estimators, viz. case deletion diagnostics, Mestimators and random sampling, and the paper develops the theory required to apply them to nonlinear orthogonal regression problems. Although a considerable amount of interest has focussed on the application of robust estimation in computer vision, the relative merits of the many individual methods are unknown, leaving the potential practitioner to guess at their value. The second goal is therefore to compare and judge the methods. Comparative tests are carried out using correspondences generated both synthetically in a statistically controlled fashion and from feature matching in real imagery. In contrast with previously reported methods the goodness of fit to the synthetic observations is judged not in terms of the fit to the observations per se but in terms of fit to the ground truth. A variety of error measures are examined. The experiments allow a statistically satisfying and quasioptimal method to be synthesized, which is shown to be stable with up to 50 percent outlier contamination, and may still be used if there are more than 50 percent outliers. Performance bounds are established for the method, and a variety of robust methods to estimate the standard deviation of the error and covariance matrix of the parameters are examined. The results of the comparison have broad applicability to vision algorithms where the input data are corrupted not only by noise but also by gross outliers.
3D Model Acquisition from Extended Image Sequences
, 1995
"... This paper describes the extraction of 3D geometrical data from image sequences, for the purpose of creating 3D models of objects in the world. The approach is uncalibrated  camera internal parameters and camera motion are not known or required. Processing an image sequence is underpinned by token ..."
Abstract

Cited by 208 (26 self)
 Add to MetaCart
This paper describes the extraction of 3D geometrical data from image sequences, for the purpose of creating 3D models of objects in the world. The approach is uncalibrated  camera internal parameters and camera motion are not known or required. Processing an image sequence is underpinned by token correspondences between images. We utilise matching techniques which are both robust (detecting and discarding mismatches) and fully automatic. The matched tokens are used to compute 3D structure, which is initialised as it appears and then recursively updated over time. We describe a novel robust estimator of the trifocal tensor, based on a minimum number of token correspondences across an image triplet; and a novel tracking algorithm in which corners and line segments are matched over image triplets in an integrated framework. Experimental results are provided for a variety of scenes, including outdoor scenes taken with a handheld camcorder. Quantitative statistics are included to asses...
ModelBased Object Pose in 25 Lines of Code
 International Journal of Computer Vision
, 1995
"... In this paper, we describe a method for finding the pose of an object from a single image. We assume that we can detect and match in the image four or more noncoplanar feature points of the object, and that we know their relative geometry on the object. The method combines two algorithms ..."
Abstract

Cited by 206 (4 self)
 Add to MetaCart
In this paper, we describe a method for finding the pose of an object from a single image. We assume that we can detect and match in the image four or more noncoplanar feature points of the object, and that we know their relative geometry on the object. The method combines two algorithms
Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions
 In Proc. BMVC
, 2000
"... `Invariant regions' are image patches that automatically deform with changing viewpoint as to keep on covering identical physical parts of a scene. Such regions are then described by a set of invariant features, which makes it relatively easy to match them between views and under changing illum ..."
Abstract

Cited by 173 (6 self)
 Add to MetaCart
`Invariant regions' are image patches that automatically deform with changing viewpoint as to keep on covering identical physical parts of a scene. Such regions are then described by a set of invariant features, which makes it relatively easy to match them between views and under changing illumination. In previous work, we have presented invariant regions that are based on a combination of corners and edges. The application discussed then was image database retrieval. Here, an alternative method for extracting (affinely) invariant regions is given, that does not depend on the presence of edges or corners in the image but is purely intensitybased. Also, we demonstrate the use of such regions for another application, which is wide baseline stereo matching. As a matter of fact, the goal is to build an opportunistic system that exploits several types of invariant regions as it sees fit. This yields more correspondences and a system that can deal with a wider range of images. To increase t...
Making Faces
, 1998
"... We have created a system for capturing both the threedimensional geometry and color and shading information for human facial expressions. We use this data to reconstruct photorealistic, 3D animations of the captured expressions. The system uses a large set of sampling points on the face to accurate ..."
Abstract

Cited by 155 (2 self)
 Add to MetaCart
We have created a system for capturing both the threedimensional geometry and color and shading information for human facial expressions. We use this data to reconstruct photorealistic, 3D animations of the captured expressions. The system uses a large set of sampling points on the face to accurately track the three dimensional deformations of the face. Simultaneously with the tracking of the geometric data, we capture multiple high resolution, registered video images of the face. These images are used to create a texture map sequence for a three dimensional polygonal face model which can then be rendered on standard 3D graphics hardware. The resulting facial animation is surprisingly lifelike and looks very much like the original live performance. Separating the capture of the geometry from the texture images eliminates much of the variance in the image data due to motion, which increases compression ratios. Although the primary emphasis of our work is not compression we have investigated the use of a novel method to compress the geometric data based on principal components analysis. The texture sequence is compressed using an MPEG4 video codec. Animations reconstructed from 512x512 pixel textures look good at data rates as low as 240 Kbits per second.
Robust Principal Component Analysis?
, 2009
"... This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse co ..."
Abstract

Cited by 149 (7 self)
 Add to MetaCart
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the ℓ1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
An Atlas Framework for Scalable Mapping
 in IEEE International Conference on Robotics and Automation
, 2003
"... This paper describes Atlas, a hybrid metrical /topological approach to SLAM that achieves efficient mapping of largescale environments. The representation is a graph of coordinate frames, with each vertex in the graph representing a local frame, and each edge representing the transformation between ..."
Abstract

Cited by 148 (17 self)
 Add to MetaCart
This paper describes Atlas, a hybrid metrical /topological approach to SLAM that achieves efficient mapping of largescale environments. The representation is a graph of coordinate frames, with each vertex in the graph representing a local frame, and each edge representing the transformation between adjacent frames. In each frame, we build a map that captures the local environment and the current robot pose along with the uncertainties of each. Each map's uncertainties are modeled with respect to its own frame. Probabilities of entities with respect to arbitrary frames are generated by following a path formed by the edges between adjacent frames, computed via Dijkstra's shortest path algorithm. Loop closing is achieved via an efficient map matching algorithm. We demonstrate the technique running in realtime in a large indoor structured environment (2.2 km path length) with multiple nested loops using laser or ultrasonic ranging sensors.
Sequential updating of projective and affine structure from motion
 International Journal of Computer Vision
, 1997
"... A structure from motion algorithm is described which recovers structure and camera position, modulo a projective ambiguity. Camera calibration is not required, and camera parameters such as focal length can be altered freely during motion. The structure is updated sequentially over an image sequenc ..."
Abstract

Cited by 142 (4 self)
 Add to MetaCart
A structure from motion algorithm is described which recovers structure and camera position, modulo a projective ambiguity. Camera calibration is not required, and camera parameters such as focal length can be altered freely during motion. The structure is updated sequentially over an image sequence, in contrast to schemes which employ a batch process. A specialisation of the algorithm to recover structure and camera position modulo an affine transformation is described, together with a method to periodically update the affine coordinate frame to prevent drift over time. We describe the constraint used to obtain this specialisation. Structure is recovered from image corners detected and matched automatically and reliably in real image sequences. Results are shown for reference objects and indoor environments, and accuracy of recovered structure is fully evaluated and compared for a number of reconstruction schemes. A specific application of the work is demonstrated  affine structure is used to compute free space maps enabling navigation through unstructured environments and avoidance of obstacles. The path planning involves only affine constructions.