Results 1  10
of
3,813
CONDENSATION  conditional density propagation for visual tracking
 International Journal of Computer Vision
, 1998
"... The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously appli ..."
Abstract

Cited by 1499 (12 self)
 Add to MetaCart
The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously applied to the interpretation of static images, in which the probability distribution of possible interpretations is represented by a randomly generated set. Condensation uses learned dynamical models, together with visual observations, to propagate the random set over time. The result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the algorithm runs in near realtime. Contents 1 Tracking curves in clutter 2 2 Discretetime propagation of state density 3 3 Factored sampling 6 4 The Condensation algorithm 8 5 Stochastic dynamical models for curve motion 10 6 Observation model 13 7 Applying the Condensation algorithm to videostreams 17 8 Conclusions 26 A Nonline...
A Tutorial on Visual Servo Control
 IEEE Transactions on Robotics and Automation
, 1996
"... This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review ..."
Abstract

Cited by 822 (25 self)
 Add to MetaCart
This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, positionbased and imagebased systems, are then discussed. Since any visual servo system must be capable of tracking image features in a sequence of images, we include an overview of featurebased and correlationbased methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control. 1 Introduction Today there are over 800,000 robots in the world, mostly working in factory environment...
Pictorial Structures for Object Recognition
 IJCV
, 2003
"... In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance ..."
Abstract

Cited by 818 (16 self)
 Add to MetaCart
(Show Context)
In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by springlike connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. We use these models to address the problem of detecting an object in an image as well as the problem of learning an object model from training examples, and present efficient algorithms for both these problems. We demonstrate the techniques by learning models that represent faces and human bodies and using the resulting models to locate the corresponding objects in novel images.
Photo tourism: Exploring photo collections in 3D
 In Proc. ACM SIGGRAPH
, 2006
"... Figure 1: Our system takes unstructured collections of photographs such as those from online image searches (a) and reconstructs 3D points and viewpoints (b) to enable novel ways of browsing the photos (c). We present a system for interactively browsing and exploring large unstructured collections o ..."
Abstract

Cited by 677 (38 self)
 Add to MetaCart
Figure 1: Our system takes unstructured collections of photographs such as those from online image searches (a) and reconstructs 3D points and viewpoints (b) to enable novel ways of browsing the photos (c). We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an imagebased modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of the scene and image to model correspondences. Our photo explorer uses imagebased rendering techniques to smoothly transition between photographs, while also enabling full 3D navigation and exploration of the set of images and world geometry, along with auxiliary information such as overhead maps. Our system also makes it easy to construct photo tours of scenic or historic locations, and to annotate image details, which are automatically transferred to other relevant images. We demonstrate our system on several large personal photo collections as well as images gathered from Internet photo sharing sites.
Contour Tracking By Stochastic Propagation of Conditional Density
, 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract

Cited by 658 (24 self)
 Add to MetaCart
(Show Context)
. In Proc. European Conf. Computer Vision, 1996, pp. 343356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent simultaneous alternative hypotheses. Extensions to the Kalman filter to handle multiple data associations work satisfactorily in the simple case of point targets, but do not extend naturally to continuous curves. A new, stochastic algorithm is proposed here, the Condensation algorithm  Conditional Density Propagation over time. It uses `factored sampling', a method previously applied to interpretation of static images, in which the distribution of possible interpretations is represented by a randomly generated set of representatives. The Condensation algorithm combines factored sampling with learned dynamical models to propagate an entire probability distribution for object pos...
Robust Principal Component Analysis?
, 2009
"... This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse co ..."
Abstract

Cited by 553 (26 self)
 Add to MetaCart
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the ℓ1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
Threedimensional object recognition from single twodimensional images
 Artificial Intelligence
, 1987
"... A computer vision system has been implemented that can recognize threedimensional objects from unknown viewpoints in single grayscale images. Unlike most other approaches, the recognition is accomplished without any attempt to reconstruct depth information bottomup from the visual input. Instead, ..."
Abstract

Cited by 483 (7 self)
 Add to MetaCart
(Show Context)
A computer vision system has been implemented that can recognize threedimensional objects from unknown viewpoints in single grayscale images. Unlike most other approaches, the recognition is accomplished without any attempt to reconstruct depth information bottomup from the visual input. Instead, three other mechanisms are used that can bridge the gap between the twodimensional image and knowledge of threedimensional objects. First, a process of perceptual organization is used to form groupings and structures in the image that are likely to be invariant over a wide range of viewpoints. Second, a probabilistic ranking method is used to reduce the size of the search space during model based matching. Finally, a process of spatial correspondence brings the projections of threedimensional models into direct correspondence with the image by solving for unknown viewpoint and model parameters. A high level of robustness in the presence of occlusion and missing data can be achieved through full application of a viewpoint consistency constraint. It is argued that similar mechanisms and constraints form the basis for recognition in human vision. This paper has been published in Artificial Intelligence, 31, 3 (March 1987), pp. 355–395. 1 1
An Efficient Solution to the FivePoint Relative Pose Problem
, 2004
"... An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degre ..."
Abstract

Cited by 475 (12 self)
 Add to MetaCart
An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degree polynomial in closed form and subsequently finding its roots. It is the first algorithm well suited for numerical implementation that also corresponds to the inherent complexity of the problem. We investigate the numerical precision of the algorithm. We also study its performance under noise in minimal as well as overdetermined cases. The performance is compared to that of the well known 8 and 7point methods and a 6point scheme. The algorithm is used in a robust hypothesizeandtest framework to estimate structure and motion in realtime with low delay. The realtime system uses solely visual input and has been demonstrated at major conferences.
Determining the Epipolar Geometry and its Uncertainty: A Review
 International Journal of Computer Vision
, 1998
"... Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two i ..."
Abstract

Cited by 400 (9 self)
 Add to MetaCart
(Show Context)
Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3&times;3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two images, and its determination is very important in many applications such as scene modeling and vehicle navigation. This paper gives an introduction to the epipolar geometry, and provides a complete review of the current techniques for estimating the fundamental matrix and its uncertainty. A wellfounded measure is proposed to compare these techniques. Projective reconstruction is also reviewed. The software which we have developed for this review is available on the Internet.
MLESAC: A New Robust Estimator with Application to Estimating Image Geometry
 Computer Vision and Image Understanding
, 2000
"... A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solu ..."
Abstract

Cited by 359 (10 self)
 Add to MetaCart
(Show Context)
A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solutions, but chooses the solution that maximizes the likelihood rather than just the number of inliers. The second part of the algorithm is a general purpose method for automatically parameterizing these relations, using the output of MLESAC. A difficulty with multiview image relations is that there are often nonlinear constraints between the parameters, making optimization a difficult task. The parameterization method overcomes the difficulty of nonlinear constraints and conducts a constrained optimization. The method is general and its use is illustrated for the estimation of fundamental matrices, image–image homographies, and quadratic transformations. Results are given for both synthetic and real images. It is demonstrated that the method gives results equal or superior to those of previous approaches. c ○ 2000 Academic Press 1.