Results 1  10
of
21
On the Undecidability of SecondOrder Unification
 INFORMATION AND COMPUTATION
, 2000
"... ... this paper, and it is the starting point for proving some novel results about the undecidability of secondorder unification presented in the rest of the paper. We prove that secondorder unification is undecidable in the following three cases: (1) each secondorder variable occurs at most t ..."
Abstract

Cited by 33 (16 self)
 Add to MetaCart
... this paper, and it is the starting point for proving some novel results about the undecidability of secondorder unification presented in the rest of the paper. We prove that secondorder unification is undecidable in the following three cases: (1) each secondorder variable occurs at most twice and there are only two secondorder variables; (2) there is only one secondorder variable and it is unary; (3) the following conditions (i)#(iv) hold for some fixed integer n: (i) the arguments of all secondorder variables are ground terms of size <n, (ii) the arity of all secondorder variables is <n, (iii) the number of occurrences of secondorder variables is #5, (iv) there is either a single secondorder variable or there are two secondorder variables and no firstorder variables.
Solvability of context equations with two context variables is decidable
 THE JOURNAL OF SYMBOLIC COMPUTATION
, 1999
"... Context unification is a natural variant of second order unification that represents a generalization of word unification at the same time. While second order unification is wellknown to be undecidable and word unification is decidable it is currently open if solvability of context equations is deci ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
Context unification is a natural variant of second order unification that represents a generalization of word unification at the same time. While second order unification is wellknown to be undecidable and word unification is decidable it is currently open if solvability of context equations is decidable. We show that solvability of systems of context equations with two context variables is decidable. The context variables may have an arbitrary number of occurrences, and the equations may contain an arbitrary number of individual variables as well. The result holds under the assumption that the first order background signature is finite.
A decision algorithm for stratified context unification
 FACHBEREICH INFORMATIK, J.W. GOETHEUNIVERSITAT
, 1999
"... Context unification is a variant of second order unification and also a generalization of string unification. Currently it is not known whether context unification is decidable. A specialization of context unification is stratified context unification. Recently, it turned out that stratified context ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
Context unification is a variant of second order unification and also a generalization of string unification. Currently it is not known whether context unification is decidable. A specialization of context unification is stratified context unification. Recently, it turned out that stratified context unification and onestep rewrite constraints are equivalent. This paper contains a description of a decision algorithm SCU for stratified context unification, which shows decidability of stratified context unification as well as of satisfiability of onestep rewrite constraints.
Decidable higherorder unification problems
 AUTOMATED DEDUCTION  CADE12. SPRINGER LNAI 814
, 1994
"... Secondorder unification is undecidable in general. Miller showed that unification of socalled higherorder patterns is decidable and unitary. Weshow that the unification of a linear higherorder pattern s with an arbitrary secondorder term that shares no variables with s is decidable and finitar ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
Secondorder unification is undecidable in general. Miller showed that unification of socalled higherorder patterns is decidable and unitary. Weshow that the unification of a linear higherorder pattern s with an arbitrary secondorder term that shares no variables with s is decidable and finitary. A few extensions of this unification problem are still decidable: unifying two secondorder terms, where one term is linear, is undecidable if the terms contain bound variables but decidable if they don't.
Decidable and undecidable secondorder unification problems
 In Proceedings of the 9th Int. Conf. on Rewriting Techniques and Applications (RTA’98), volume 1379 of LNCS
, 1998
"... Abstract. There is a close relationship between word unification and secondorder unification. This similarity has been exploited for instance for proving decidability of monadic secondorder unification. Word unification can be easily decided by transformation rules (similar to the ones applied in ..."
Abstract

Cited by 15 (9 self)
 Add to MetaCart
Abstract. There is a close relationship between word unification and secondorder unification. This similarity has been exploited for instance for proving decidability of monadic secondorder unification. Word unification can be easily decided by transformation rules (similar to the ones applied in higherorder unification procedures) when variables are restricted to occur at most twice. Hence a wellknown open question was the decidability of secondorder unification under this same restriction. Here we answer this question negatively by reducing simultaneous rigid Eunification to secondorder unification. This reduction, together with an inverse reduction found by Degtyarev and Voronkov, states an equivalence relationship between both unification problems. Our reduction is in some sense reversible, providing decidability results for cases when simultaneous rigid Eunification is decidable. This happens, for example, for onevariable problems where the variable occurs at most twice (because rigid Eunification is decidable for just one equation). We also prove decidability when no variable occurs more than once, hence significantly narrowing the gap between decidable and undecidable secondorder unification problems with variable occurrence restrictions. 1
BetaReduction As Unification
, 1996
"... this report, we use a lean version of the usual system of intersection types, whichwe call . Hence, UP is also an appropriate unification problem to characterize typability of terms in . Quite apart from the new light it sheds on fireduction, such an analysis turns out to have several othe ..."
Abstract

Cited by 13 (9 self)
 Add to MetaCart
this report, we use a lean version of the usual system of intersection types, whichwe call . Hence, UP is also an appropriate unification problem to characterize typability of terms in . Quite apart from the new light it sheds on fireduction, such an analysis turns out to have several other benefits
Secondorder unification and type inference for Churchstyle polymorphism
 In Conference Record of POPL 98: The 25TH ACM SIGPLANSIGACT Symposium on Principles of Programming Languages
, 1998
"... We present a proof of the undecidability of type inference for the Churchstyle system F  an abstraction of polymorphism. A natural reduction from the secondorder unification problem to type inference leads to strong restriction on instances  arguments of variables cannot contain variables. T ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
We present a proof of the undecidability of type inference for the Churchstyle system F  an abstraction of polymorphism. A natural reduction from the secondorder unification problem to type inference leads to strong restriction on instances  arguments of variables cannot contain variables. This requires another proof of the undecidability of the secondorder unification since known results use variables in arguments of other variables. Moreover, our proof uses elementary techniques, which is important from the methodological point of view, because Goldfarb's proof [Gol81] highly relies on the undecidability of the tenth Hilbert's problem. 1 1 Introduction The Churchstyle system F was independently introduced by Girard [Gir72] and Reynolds [Rey74] as an extension of the simplytyped calculus a type system introduced of H. B. Curry [Cur69]. As usual for type systems, the decidability of so called sequent decision problems was considered. A sequent decision problem in some ty...
Tractable and Intractable SecondOrder Matching Problems
 In Proc. 5th Ann. Int. Computing and Combinatorics Conference (COCOON'99), LNCS 1627
, 1999
"... . The secondorder matching problem is the problem of determining, for a finite set {#t i , s i #  i # I} of pairs of a secondorder term t i and a firstorder closed term s i , called a matching expression, whether or not there exists a substitution # such that t i # = s i for each i # I ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
. The secondorder matching problem is the problem of determining, for a finite set {#t i , s i #  i # I} of pairs of a secondorder term t i and a firstorder closed term s i , called a matching expression, whether or not there exists a substitution # such that t i # = s i for each i # I . It is wellknown that the secondorder matching problem is NPcomplete. In this paper, we introduce the following restrictions of a matching expression: kary, kfv , predicate, ground , and functionfree. Then, we show that the secondorder matching problem is NPcomplete for a unary predicate, a unary ground, a ternary functionfree predicate, a binary functionfree ground, and an 1fv predicate matching expressions, while it is solvable in polynomial time for a binary functionfree predicate, a unary functionfree, a kfv functionfree (k # 0), and a ground predicate matching expressions. 1 Introduction The unification problem is the problem of determining whether or not any two ter...
Referential logic of proofs
 Theoretical Computer Science
"... We introduce an extension of the propositional logic of singleconclusion proofs by the second order variables denoting the reference constructors of the type “the formula which is proved by x. ” The resulting Logic of Proofs with References, FLPref, is shown to be decidable, and to enjoy soundness ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
We introduce an extension of the propositional logic of singleconclusion proofs by the second order variables denoting the reference constructors of the type “the formula which is proved by x. ” The resulting Logic of Proofs with References, FLPref, is shown to be decidable, and to enjoy soundness and completeness with respect to the intended provability semantics. We show that FLPref provides a complete test of admissibility of inference rules in a sound extension of arithmetic. Key words: proof theory, explicit modal logic, single conclusion logic of proofs, proof term, reference, unification, admissible inference rule. 1
On Unification Problems in Restricted SecondOrder Languages
 In Annual Conf. of the European Ass. of Computer Science Logic (CSL98
, 1998
"... We review known results and improve known boundaries between the decidable and the undecidable cases of secondorder unification with various restrictions on secondorder variables. As a key tool we prove an undecidability result that provides a partial solution to an open problem about simultaneous ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
We review known results and improve known boundaries between the decidable and the undecidable cases of secondorder unification with various restrictions on secondorder variables. As a key tool we prove an undecidability result that provides a partial solution to an open problem about simultaneous rigid Eunification.