Results 1  10
of
69
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 519 (6 self)
 Add to MetaCart
A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in many practical applications, some a priori knowledge exists which considerably simplifies the problem. In visual navigation, for example, the motion between successive positions is usually approximately known. From this initial estimate, our algorithm computes observer motion with very good precision, which is required for environment modeling (e.g., building a Digital Elevation Map). Objects are represented by a set of 3D points, which are considered as the samples of a surface. No constraint is imposed on the form of the objects. The proposed algorithm is based on iteratively matching points in one set to the closest points in the other. A statistical method based on the distance distribution is used to deal with outliers, occlusion, appearance and disappearance, which allows us to do subsetsubset matching. A leastsquares technique is used to estimate 3D motion from the point correspondences, which reduces the average distance between points in the two sets. Both synthetic and real data have been used to test the algorithm, and the results show that it is efficient and robust, and yields an accurate motion estimate.
On aligning curves
 IEEE TPAMI
, 2003
"... We present a novel approach to finding a correspondence (alignment) between two curves. The correspondence is based on a notion of an alignment curve which treats both curves symmetrically. We then define a similarity metric based on the alignment curve using two intrinsic properties of the curve, ..."
Abstract

Cited by 98 (3 self)
 Add to MetaCart
We present a novel approach to finding a correspondence (alignment) between two curves. The correspondence is based on a notion of an alignment curve which treats both curves symmetrically. We then define a similarity metric based on the alignment curve using two intrinsic properties of the curve, namely, length and curvature. The optimal correspondence is found by an efficient dynamicprogramming method both for aligning pairs of curve segments and pairs of closed curves, and is effective in the presence of a variety of transformations of the curve. Finally, the correspondence is shown in application to handwritten character recognition, prototype formation, and object recognition, and is potentially useful in other applications such as registration and tracking.
Least squares 3D surface and curve matching
 ISPRS Journal of Photogrammetry and Remote Sensing
, 2005
"... The automatic coregistration of point clouds, representing 3D surfaces, is a relevant problem in 3D modeling. This multiple registration problem can be defined as a surface matching task. We treat it as least squares matching of overlapping surfaces. The surface may have been digitized/sampled poin ..."
Abstract

Cited by 69 (14 self)
 Add to MetaCart
The automatic coregistration of point clouds, representing 3D surfaces, is a relevant problem in 3D modeling. This multiple registration problem can be defined as a surface matching task. We treat it as least squares matching of overlapping surfaces. The surface may have been digitized/sampled point by point using a laser scanner device, a photogrammetric method or other surface measurement techniques. Our proposed method estimates the transformation parameters of one or more 3D search surfaces with respect to a 3D template surface, using the Generalized GaussMarkoff model, minimizing the sum of squares of the Euclidean distances between the surfaces. This formulation gives the opportunity of matching arbitrarily oriented 3D surface patches. It fully considers 3D geometry. Besides the mathematical model and execution aspects we address the further extensions of the basic model. We also show how this method can be used for curve matching in 3D space and matching of curves to surfaces. Some practical examples based on the registration of closerange laser scanner and photogrammetric point clouds are presented for the demonstration of the method. This surface matching technique is a generalization of the least squares image matching concept and offers high flexibility for any kind of 3D surface correspondence problem, as well as statistical tools for the analysis of the quality of final matching results.
PiecewiseLinear Interpolation between Polygonal Slices
 Computer Vision and Image Understanding
, 1994
"... In this paper we present a new technique for piecewiselinear surface reconstruction from a series of parallel polygonal crosssections. This is an important problem in medical imaging, surface reconstruction from topographic data, and other applications. We reduce the problem, as in most previous wo ..."
Abstract

Cited by 67 (12 self)
 Add to MetaCart
In this paper we present a new technique for piecewiselinear surface reconstruction from a series of parallel polygonal crosssections. This is an important problem in medical imaging, surface reconstruction from topographic data, and other applications. We reduce the problem, as in most previous works, to a series of problems of piecewiselinear interpolation between each pair of successive slices. Our algorithm uses a partial curve matching technique for matching parts of the contours, an optimal triangulation of 3D polygons for resolving the unmatched parts, and a minimum spanning tree heuristic for interpolating between non simply connected regions. Unlike previous attempts at solving this problem, our algorithm seems to handle successfully any kind of data. It allows multiple contours in each slice, with any hierarchy of contour nesting, and avoids the introduction of counterintuitive bridges between contours, proposed in some earlier papers to handle interpolation between multi...
Planar Object Recognition using Projective Shape Representation
 International Journal of Computer Vision
, 1995
"... We describe a model based recognition system, called LEWIS, for the identification of planar objects based on a projectively invariant representation of shape. The advantages of this shape description include simple model acquisition (direct from images), no need for camera calibration or object pos ..."
Abstract

Cited by 56 (9 self)
 Add to MetaCart
We describe a model based recognition system, called LEWIS, for the identification of planar objects based on a projectively invariant representation of shape. The advantages of this shape description include simple model acquisition (direct from images), no need for camera calibration or object pose computation, and the use of index functions. We describe the feature construction and recognition algorithms in detail and provide an analysis of the combinatorial advantages of using index functions. Index functions are used to select models from a model base and are constructed from projective invariants based on algebraic curves and a canonical projective coordinate frame. Examples are given of object recognition from images of real scenes, with extensive object libraries. Successful recognition is demonstrated despite partial occlusion by unmodelled objects, and realistic lighting conditions. 1 Introduction 1.1 Overview In the context of this paper, recognition is defined as the prob...
On 3D Shape Similarity
 Proc. CVPR’96
, 1995
"... We study the 3D shape similarity between closed surfaces. We represent a curved or polyhedral 3D object of genus zero using a mesh representation that has nearly uniform distribution with known connectivity among mesh nodes. We define a shape similarity metric based on the L 2 distance between the ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
We study the 3D shape similarity between closed surfaces. We represent a curved or polyhedral 3D object of genus zero using a mesh representation that has nearly uniform distribution with known connectivity among mesh nodes. We define a shape similarity metric based on the L 2 distance between the local curvature distributions over the mesh representations of the two objects. For both convex and concave objects, the shape metric can be computed in time O(n 2 ), where n is the number of tessellation of sphere or the number of meshes which approximate the surface. Experiments show that our method produces good shape similarity measurements. Table of Content 1 Introduction 1 2 Representation of a Closed Surface 6 2.1 Discrete Representation of a Curve ..................................................................................... 6 2.2 Spherical Representation of a 3D Surface........................................................................... 6 2.3 3D Local Curvature:...
Filling Gaps in the Boundary of a Polyhedron
 Computer Aided Geometric Design
, 1993
"... In this paper we present an algorithm for detecting and repairing defects in the boundary of a polyhedron. These defects, usually caused by problems in CAD software, consist of small gaps bounded by edges that are incident to only one polyhedron face. The algorithm uses a partial curve matching t ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
In this paper we present an algorithm for detecting and repairing defects in the boundary of a polyhedron. These defects, usually caused by problems in CAD software, consist of small gaps bounded by edges that are incident to only one polyhedron face. The algorithm uses a partial curve matching technique for matching parts of the defects, and an optimal triangulation of 3D polygons for resolving the unmatched parts. It is also shown that finding a consistent set of partial curve matches with maximum score, a subproblem which is related to our repairing process, is NPHard. Experimental results on several polyhedra are presented. Keywords: CAD, polyhedra, gap filling, curve matching, geometric hashing, triangulation. 1 Introduction The problem studied in this paper is the detection and repair of "gaps" in the boundary of a polyhedron. This problem usually appears in polyhedral approximations of CAD objects, whose boundaries are described using curved entities of higher leve...
Integral invariants for shape matching
 PAMI
, 2006
"... Abstract—For shapes represented as closed planar contours, we introduce a class of functionals which are invariant with respect to the Euclidean group and which are obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
Abstract—For shapes represented as closed planar contours, we introduce a class of functionals which are invariant with respect to the Euclidean group and which are obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential counterparts, such as locality of computation (which allows matching under occlusions) and uniqueness of representation (asymptotically), they do not exhibit the noise sensitivity associated with differential quantities and, therefore, do not require presmoothing of the input shape. Our formulation allows the analysis of shapes at multiple scales. Based on integral invariants, we define a notion of distance between shapes. The proposed distance measure can be computed efficiently and allows warping the shape boundaries onto each other; its computation results in optimal point correspondence as an intermediate step. Numerical results on shape matching demonstrate that this framework can match shapes despite the deformation of subparts, missing parts and noise. As a quantitative analysis, we report matching scores for shape retrieval from a database. Index Terms—Integral invariants, shape, shape matching, shape distance, shape retrieval. Ç 1
Partial Surface and Volume Matching in Three Dimensions
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... In this paper we present a new technique for partial surface and volume matching of images in three dimensions. In this ..."
Abstract

Cited by 30 (1 self)
 Add to MetaCart
In this paper we present a new technique for partial surface and volume matching of images in three dimensions. In this