Results 11  20
of
194
3D Collision Detection: A Survey
 Computers and Graphics
, 2000
"... Many applications in Computer Graphics require fast and robust 3D collision detection algorithms. These algorithms can be grouped into four approaches: spacetime volume intersection, swept volume interference, multiple interference detection and trajectory parameterization. While some approaches ar ..."
Abstract

Cited by 84 (3 self)
 Add to MetaCart
Many applications in Computer Graphics require fast and robust 3D collision detection algorithms. These algorithms can be grouped into four approaches: spacetime volume intersection, swept volume interference, multiple interference detection and trajectory parameterization. While some approaches are linked to a particular object representation scheme (e.g., spacetime volume intersection is particularly suited to a CSG representation), others do not. The multiple interference detection approach has been the most widely used under a variety of sampling strategies, reducing the collision detection problem to multiple calls to static interference tests. In most cases, these tests boil down to detecting intersections between simple geometric entities, such as spheres, boxes aligned with the coordinate axes, or polygons and segments. The computational cost of a collision detection algorithm depends not only on the complexity of the basic interference test used, but also on the ...
Incremental algorithms for collision detection between solid models
 IEEE Transactions on Visualization and Computer Graphics
, 1995
"... solid models ..."
Collision and Proximity Queries
, 2003
"... In a geometric context, a collision or proximity query reports information about the relative configuration or placement of two objects. Some of the common examples of such queries include checking whether two objects overlap in space, or whether their boundaries intersect, or computing the minimum ..."
Abstract

Cited by 74 (15 self)
 Add to MetaCart
In a geometric context, a collision or proximity query reports information about the relative configuration or placement of two objects. Some of the common examples of such queries include checking whether two objects overlap in space, or whether their boundaries intersect, or computing the minimum Euclidean separation distance between their boundaries. Hundreds of papers have been published on di#erent aspects of these queries in computational geometry and related areas such as robotics, computer graphics, virtual environments, and computeraided design. These queries arise in di#erent applications including robot motion planning, dynamic simulation, haptic rendering, virtual prototyping, interactive walkthroughs, computer gaming, and molecular modeling. For example, a largescale virtual environment, e.g., a walkthrough, creates a model of the environment with virtual objects. Such an environment is used to give the user a sense of presence in a synthetic world and it s
On Delaying Collision Checking in PRM Planning  Application To MultiRobot Coordination
 INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
, 2002
"... This paper describes the foundations and algorithms of a new probabilistic roadmap (PRM) planner that is: singlequery  instead of precomputing a roadmap covering the entire free space, it uses the two input query configurations to explore as little space as possible; bidirectional  it explo ..."
Abstract

Cited by 65 (16 self)
 Add to MetaCart
This paper describes the foundations and algorithms of a new probabilistic roadmap (PRM) planner that is: singlequery  instead of precomputing a roadmap covering the entire free space, it uses the two input query configurations to explore as little space as possible; bidirectional  it explores the robot's free space by building a roadmap made of two trees rooted at the query configurations; and lazy in checking collisions  it delays collision tests along the edges of the roadmap until they are absolutely needed. Several observations motivated this strategy: (1) PRM planners spend a large fraction of their time testing connections for collision; (2) most connections in a roadmap are not on the final path; (3) the collision test for a connection is most expensive when there is no collision; and (4) any short connection between two collisionfree configurations has high prior probability of being collisionfree. The strengths of singlequery and bidirectional sampling techniques, and those of delayed collision checking reinforce each other. Experimental results
A Framework For Efficient Minimum Distance Computations
, 1998
"... In this paper we present a framework for minimum distance computations that allows efficient solution of minimum distance queries on a variety of surface representations, including sculptured surfaces. The framework depends on geometric reasoning rather than numerical methods and can be implemented ..."
Abstract

Cited by 64 (11 self)
 Add to MetaCart
In this paper we present a framework for minimum distance computations that allows efficient solution of minimum distance queries on a variety of surface representations, including sculptured surfaces. The framework depends on geometric reasoning rather than numerical methods and can be implemented straightforwardly. We demonstrate performance that compares favorably to other polygonal methods and is faster than reported results for other methods on sculptured surfaces. 1 Introduction We introduce a framework for minimum distance calculations that applies well to both polygonal and parametric model representations (Figure 1). The resulting methods scale well with problem size, have timecritical properties, and are interactive for large polygonal models and sculptured surfaces. In robotics, minimum distance queries have been used in path planning [2], path modification [25], and collision avoidance [15]. In computer graphics, minimum distance computations have played roles in physical...
Evaluation of Collision Detection Methods for Virtual Reality FlyThroughs
 In Canadian Conference on Computational Geometry
, 1995
"... We consider the problem of preprocessing a scene of polyhedral models in order to perform collision detection very efficiently for an object that moves amongst obstacles. This problem is of central importance in virtual reality applications, where it is necessary to check for collisions at realtime ..."
Abstract

Cited by 63 (7 self)
 Add to MetaCart
We consider the problem of preprocessing a scene of polyhedral models in order to perform collision detection very efficiently for an object that moves amongst obstacles. This problem is of central importance in virtual reality applications, where it is necessary to check for collisions at realtime rates. We give an algorithm for collision detection that is based on the use of a mesh (tetrahedralization) of the free space that has (hopefully) low stabbing number. The algorithm has been implemented and tested, and we give experimental results comparing its performance against three other algorithms that we implemented, based on standard data structures. A preliminary version of this paper appeared in the proceedings of the 7 th Canad. Conf. Computat. Geometry, Qu'ebec, Aug 1013, 1995. y held@ams.sunysb.edu; Supported by NSF Grant DMS9312098. On sabbatical leave from Universitat Salzburg, Salzburg, Austria. z jklosow@ams.sunysb.edu; Supported by NSF grants ECSE8857642 and C...
Timewarp rigid body simulation
 IN PROC. OF ACM SIGGRAPH
, 2000
"... The traditional highlevel algorithms for rigid body simulation work well for moderate numbers of bodies but scale poorly to systems of hundreds or more moving, interacting bodies. The problem is unnecessary synchronization implicit in these methods. Jefferson´s timewarp algorithm (Jefferson 85) is ..."
Abstract

Cited by 50 (0 self)
 Add to MetaCart
The traditional highlevel algorithms for rigid body simulation work well for moderate numbers of bodies but scale poorly to systems of hundreds or more moving, interacting bodies. The problem is unnecessary synchronization implicit in these methods. Jefferson´s timewarp algorithm (Jefferson 85) is a technique for alleviating this problem in parallel discrete event simulation. Rigid body dynamics, though a continuous process, exhibits many aspects of a discrete one. With modification, the timewarp algorithm can be used in a uniprocessor rigid body simulator to give substantial performance improvements for simulations with large numbers of bodies. This paper describes the limitations of the traditional highlevel simulation algorithms, introduces Jefferson´s algorithm, and extends and optimizes it for the rigid body case. It addresses issues particular to rigid body simulation, such as collision detection and contact group management, and describes how to incorporate these into the timewarp framework. Quantitative experimental results indicate that the timewarp algorithm offers significant performance improvements over traditional highlevel rigid body simulation algorithms, when applied to systems with hundreds of bodies. It also helps pave the way to parallel implementations, as the paper discusses.
Fast continuous collision detection between rigid bodies
 Proc. of Eurographics (Computer Graphics Forum
, 2002
"... This paper introduces a fast continuous collision detection technique for polyhedral rigid bodies. As opposed to most collision detection techniques, the computation of the first contact time between two objects is inherently part of the algorithm. The method can thus robustly prevent objects interp ..."
Abstract

Cited by 49 (10 self)
 Add to MetaCart
This paper introduces a fast continuous collision detection technique for polyhedral rigid bodies. As opposed to most collision detection techniques, the computation of the first contact time between two objects is inherently part of the algorithm. The method can thus robustly prevent objects interpenetrations or collisions misses, even when objects are thin or have large velocities. The method is valid for general objects (polygon soups), handles multiple moving objects and acyclic articulated bodies, and is efficient in low and high coherency situations. Moreover, the method can be used to speed up existent continuous collision detection methods for parametric or implicit rigid surfaces. The collision detection algorithms have been successfully coupled to a realtime dynamics simulator. Various experiments are conducted that show the method’s ability to produce highquality interaction (precise objects positioning for example) between models up to tens of thousands of triangles, which couldn’t have been performed with previous continuous methods. Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation Virtual Reality 1.
Fast Distance Queries with Rectangular Swept Sphere Volumes
 Proc. of IEEE Int. Conference on Robotics and Automation
, 2000
"... : We present new distance computation algorithms using hierarchies of rectangular swept spheres. Each bounding volume of the tree is described as the Minkowski sum of a rectangle and a sphere, and fits tightly to the underlying geometry. We present accurate and efficient algorithms to build the hier ..."
Abstract

Cited by 48 (13 self)
 Add to MetaCart
: We present new distance computation algorithms using hierarchies of rectangular swept spheres. Each bounding volume of the tree is described as the Minkowski sum of a rectangle and a sphere, and fits tightly to the underlying geometry. We present accurate and efficient algorithms to build the hierarchies and perform distance queries between the bounding volumes. We also present traversal techniques for accelerating distance queries using coherence and priority directed search. These algorithms have been used to perform proximity queries for applications including virtual prototyping, dynamic simulation, and motion planning on complex models. As compared to earlier algorithms based on bounding volume hierarchies for separation distance and approximate distance computation, our algorithms have achieved significant speedups on many benchmarks. 1
Deriving Action and Behavior Primitives from Human Motion
 In International Conference on Intelligent Robots and Systems
, 2002
"... We address the problem of creating basis behaviors for modularizing humanoid robot control and representing human activity. These behaviors, called perceptualmotor primtives, serve as a substrate for linking a system's perception of human activities and the ability to perform those activities. We p ..."
Abstract

Cited by 48 (1 self)
 Add to MetaCart
We address the problem of creating basis behaviors for modularizing humanoid robot control and representing human activity. These behaviors, called perceptualmotor primtives, serve as a substrate for linking a system's perception of human activities and the ability to perform those activities. We present a datadriven method for deriving perceptualmotor action and behavior primitives from human motion capture data. In order to nd these primitives, we employ a spatiotemporal nonlinear dimension reduction technique on a set of motion segments. From this transformation, motions representing the same action can be clustered and generalized. The nonlinear transformation is also applied in an iterative fashion to derive extended duration behaviors.