Results 1 
8 of
8
Gödel's program for new axioms: Why, where, how and what?
 IN GODEL '96
, 1996
"... From 1931 until late in his life (at least 1970) Gödel called for the pursuit of new axioms for mathematics to settle both undecided numbertheoretical propositions (of the form obtained in his incompleteness results) and undecided settheoretical propositions (in particular CH). As to the nature of ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
From 1931 until late in his life (at least 1970) Gödel called for the pursuit of new axioms for mathematics to settle both undecided numbertheoretical propositions (of the form obtained in his incompleteness results) and undecided settheoretical propositions (in particular CH). As to the nature of these, Gödel made a variety of suggestions, but most frequently he emphasized the route of introducing ever higher axioms of in nity. In particular, he speculated (in his 1946 Princeton remarks) that there might be a uniform (though nondecidable) rationale for the choice of the latter. Despite the intense exploration of the "higher infinite" in the last 30odd years, no single rationale of that character has emerged. Moreover, CH still remains undecided by such axioms, though they have been demonstrated to have many other interesting settheoretical consequences. In this paper, I present a new very general notion of the "unfolding" closure of schematically axiomatized formal systems S which provides a uniform systematic means of expanding in an essential way both the language and axioms (and hence theorems) of such systems S. Reporting joint work with T. Strahm, a characterization is given in more familiar terms in the case that S is a basic
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
Is the Continuum Hypothesis a definite mathematical problem?
"... [t]he analysis of the phrase “how many ” unambiguously leads to a definite meaning for the question [“How many different sets of integers do their exist?”]: the problem is to find out which one of the א’s is the number of points of a straight line … Cantor, after having proved that this number is gr ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
[t]he analysis of the phrase “how many ” unambiguously leads to a definite meaning for the question [“How many different sets of integers do their exist?”]: the problem is to find out which one of the א’s is the number of points of a straight line … Cantor, after having proved that this number is greater than א0, conjectured that it is א1. An equivalent proposition is this: any infinite subset of the continuum has the power either of the set of integers or of the whole continuum. This is Cantor’s continuum hypothesis. … But, although Cantor’s set theory has now had a development of more than sixty years and the [continuum] problem is evidently of great importance for it, nothing has been proved so far relative to the question of what the power of the continuum is or whether its subsets satisfy the condition just stated, except that … it is true for a certain infinitesimal fraction of these subsets, [namely] the analytic sets. Not even an upper bound, however high, can be assigned for the power of the continuum. It is undecided whether this number is regular or singular, accessible or inaccessible, and (except for König’s negative result) what its character of cofinality is. Gödel 1947, 516517 [in Gödel 1990, 178]
The Impact of the Incompleteness Theorems
"... In addition to this being the centenary of Kurt Gödel’s birth, January marked 75 years since the publication (1931) of his stunning incompleteness theorems. Though widely known in one form or another by practicing mathematicians, and generally thought to say something fundamental about the limits an ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In addition to this being the centenary of Kurt Gödel’s birth, January marked 75 years since the publication (1931) of his stunning incompleteness theorems. Though widely known in one form or another by practicing mathematicians, and generally thought to say something fundamental about the limits and potentialities of mathematical knowledge, the actual importance of these results for mathematics is little understood. Nor is this an isolated example among famous results. For example, not long ago, Philip Davis wrote me about what he calls The Paradox of Irrelevance: “There are many math problems that have achieved the cachet of tremendous significance, e.g., Fermat, fourcolor, Kepler’s packing, Gödel, etc. Of Fermat, I have read: ‘the most famous math problem of all time’. Of Gödel, I have read: ‘the most mathematically significant achievement of the 20th century’. … Yet, these problems have engaged the attention of relatively few research mathematicians—even in pure math. ” What accounts for this disconnect between fame and relevance? Before going into the question for Gödel’s theorems, it should be distinguished in one respect from the other examples mentioned, which in any case form quite a mixed bag. Namely, each of the Fermat, fourcolor, and Kepler’s packing problems posed a standout challenge following extended efforts to settle them; meeting the challenge in each case required new ideas or approaches and intense work, obviously of different degrees. By contrast, Gödel’s theorems were simply unexpected, and their proofs, though requiring novel techniques, were not difficult on the scale of things. SetSolomon Feferman is professor of mathematics and philosophy, emeritus, at Stanford University. His email address is
Presentation to the panel, “Does mathematics need new axioms?”
"... The point of departure for this panel is a somewhat controversial paper that I published in the American Mathematical Monthly under the title “Does mathematics need new axioms? ” [4]. The paper itself was based on a lecture that I gave in 1997 to a joint session of the American Mathematical Society ..."
Abstract
 Add to MetaCart
The point of departure for this panel is a somewhat controversial paper that I published in the American Mathematical Monthly under the title “Does mathematics need new axioms? ” [4]. The paper itself was based on a lecture that I gave in 1997 to a joint session of the American Mathematical Society and the Mathematical Association of America, and it was thus written for a general mathematical audience. Basically, it was intended as an assessment of Gödel’s program for new axioms that he had advanced most prominently in his 1947 paper for the Monthly, entitled “What is Cantor’s continuum problem? ” [7]. My paper aimed to be an assessment of that program in the light of research in mathematical logic in the intervening years, beginning in the 1960s, but especially in more recent years. In my presentation here I shall be following [4] in its main points, though enlarging on some of them. Some passages are even taken almost verbatim from that paper where convenient, though of course all expository background material that was necessary there for a general audience is omitted. 1 For a logical audience I have written before about
Are There Absolutely Unsolvable Problems? Gödel’s Dichotomy
 PHILOSOPHIA MATHEMATICA
, 2006
"... This is a critical analysis of the first part of Gödel’s 1951 Gibbs lecture on certain philosophical consequences of the incompleteness theorems. Gödel’s discussion is framed in terms of a distinction between objective mathematics and subjective mathematics, according to which the former consists of ..."
Abstract
 Add to MetaCart
This is a critical analysis of the first part of Gödel’s 1951 Gibbs lecture on certain philosophical consequences of the incompleteness theorems. Gödel’s discussion is framed in terms of a distinction between objective mathematics and subjective mathematics, according to which the former consists of the truths of mathematics in an absolute sense, and the latter consists of all humanly demonstrable truths. The question is whether these coincide; if they do, no formal axiomatic system (or Turing machine) can comprehend the mathematizing potentialities of human thought, and, if not, there are absolutely unsolvable mathematical problems of diophantine form. Either... the human mind... infinitely surpasses the powers of any finite machine, or else there exist absolutely unsolvable diophantine problems.
The Continuum Hypothesis
, 2011
"... The continuum hypotheses (CH) is one of the most central open problems in set theory, one that is important for both mathematical and philosophical reasons. The problem actually arose with the birth of set theory; indeed, in many respects it stimulated the birth of set theory. In 1874 Cantor had sho ..."
Abstract
 Add to MetaCart
The continuum hypotheses (CH) is one of the most central open problems in set theory, one that is important for both mathematical and philosophical reasons. The problem actually arose with the birth of set theory; indeed, in many respects it stimulated the birth of set theory. In 1874 Cantor had shown that there is a onetoone correspondence between the natural numbers and the algebraic numbers. More surprisingly, he showed that there is no onetoone correspondence between the natural numbers and the real numbers. Taking the existence of a onetoone correspondence as a criterion for when two sets have the same size (something he certainly did by 1878), this result shows that there is more than one level of infinity and thus gave birth to the higher infinite in mathematics. Cantor immediately tried to determine whether there were any infinite sets of real numbers that were ofintermediate size, that is, whether there was an infinite set of real numbers that could not be put into onetoone correspondence with the natural numbers and