Results 1 
3 of
3
Is Complexity a Source of Incompleteness?
 IS COMPLEXITY A SOURCE OF INCOMPLETENESS
, 2004
"... ..."
The Impact of the Incompleteness Theorems
"... In addition to this being the centenary of Kurt Gödel’s birth, January marked 75 years since the publication (1931) of his stunning incompleteness theorems. Though widely known in one form or another by practicing mathematicians, and generally thought to say something fundamental about the limits an ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In addition to this being the centenary of Kurt Gödel’s birth, January marked 75 years since the publication (1931) of his stunning incompleteness theorems. Though widely known in one form or another by practicing mathematicians, and generally thought to say something fundamental about the limits and potentialities of mathematical knowledge, the actual importance of these results for mathematics is little understood. Nor is this an isolated example among famous results. For example, not long ago, Philip Davis wrote me about what he calls The Paradox of Irrelevance: “There are many math problems that have achieved the cachet of tremendous significance, e.g., Fermat, fourcolor, Kepler’s packing, Gödel, etc. Of Fermat, I have read: ‘the most famous math problem of all time’. Of Gödel, I have read: ‘the most mathematically significant achievement of the 20th century’. … Yet, these problems have engaged the attention of relatively few research mathematicians—even in pure math. ” What accounts for this disconnect between fame and relevance? Before going into the question for Gödel’s theorems, it should be distinguished in one respect from the other examples mentioned, which in any case form quite a mixed bag. Namely, each of the Fermat, fourcolor, and Kepler’s packing problems posed a standout challenge following extended efforts to settle them; meeting the challenge in each case required new ideas or approaches and intense work, obviously of different degrees. By contrast, Gödel’s theorems were simply unexpected, and their proofs, though requiring novel techniques, were not difficult on the scale of things. SetSolomon Feferman is professor of mathematics and philosophy, emeritus, at Stanford University. His email address is
BERNAYS AND SET THEORY
"... Abstract. We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles. Paul Isaak Bernays (1888–1977) is an important figure in the development of mathematical logic, being the main bridge between Hilbert and Göd ..."
Abstract
 Add to MetaCart
Abstract. We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles. Paul Isaak Bernays (1888–1977) is an important figure in the development of mathematical logic, being the main bridge between Hilbert and Gödel in the intermediate generation and making contributions in proof theory, set theory, and the philosophy of mathematics. Bernays is best known for the twovolume 1934,1939 Grundlagen der Mathematik [39, 40], written solely by him though Hilbert was retained as first author. Going into many reprintings and an eventual second edition thirty years later, this monumental work provided a magisterial exposition of the work of the Hilbert school in the formalization of firstorder logic and in proof theory and the work of Gödel on incompleteness and its surround, including the first complete proof of the Second Incompleteness Theorem. 1 Recent reevaluation of Bernays ’ role actually places him at the center of the development of mathematical logic and Hilbert’s program. 2 But starting in his forties, Bernays did his most individuated, distinctive mathematical work in set theory, providing a timely axiomatization and later applying higherorder reflection principles, and produced a stream of