Results 1 
5 of
5
A proof of the Kepler conjecture
 Math. Intelligencer
, 1994
"... This section describes the structure of the proof of ..."
Abstract

Cited by 118 (11 self)
 Add to MetaCart
(Show Context)
This section describes the structure of the proof of
Importing HOL Light into Coq
 In ITP
, 2010
"... Abstract. We present a new scheme to translate mathematical developments from HOL Light to Coq, where they can be reused and rechecked. By relying on a carefully chosen embedding of HigherOrder Logic into Type Theory, we try to avoid some pitfalls of interoperation between proof systems. In parti ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We present a new scheme to translate mathematical developments from HOL Light to Coq, where they can be reused and rechecked. By relying on a carefully chosen embedding of HigherOrder Logic into Type Theory, we try to avoid some pitfalls of interoperation between proof systems. In particular, our translation keeps the mathematical statements intelligible. This translation has been implemented and allows the importation of the HOL Light basic library into Coq. 1
Ideas for a MathWiki Editor
"... We present some functional and nonfunctional requirements and wishes for a webbased editor for formalized mathematics, in particular for use in the MathWiki project at RU Nijmegen [13]. We discuss possible implementation alternatives, and argue for a holistic design of the entire wiki with editor ..."
Abstract
 Add to MetaCart
(Show Context)
We present some functional and nonfunctional requirements and wishes for a webbased editor for formalized mathematics, in particular for use in the MathWiki project at RU Nijmegen [13]. We discuss possible implementation alternatives, and argue for a holistic design of the entire wiki with editor features in mind. 1
unknown title
"... Comparing the complexity of some (formalist interpretations of) foundational systems for mathematics ..."
Abstract
 Add to MetaCart
(Show Context)
Comparing the complexity of some (formalist interpretations of) foundational systems for mathematics