Results 11  20
of
133
Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133
, 2005
"... Ensembles used for probabilistic weather forecasting often exhibit a spreaderror correlation, but they tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distr ..."
Abstract

Cited by 71 (28 self)
 Add to MetaCart
Ensembles used for probabilistic weather forecasting often exhibit a spreaderror correlation, but they tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distributions from different sources. The BMA predictive probability density function (PDF) of any quantity of interest is a weighted average of PDFs centered on the individual biascorrected forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts and reflect the models ’ relative contributions to predictive skill over the training period. The BMA weights can be used to assess the usefulness of ensemble members, and this can be used as a basis for selecting ensemble members; this can be useful given the cost of running large ensembles. The BMA PDF can be represented as an unweighted ensemble of any desired size, by simulating from the BMA predictive distribution. The BMA predictive variance can be decomposed into two components, one corresponding to the betweenforecast variability, and the second to the withinforecast variability. Predictive PDFs or intervals based solely on the ensemble spread incorporate the first component but not the second. Thus BMA provides a theoretical explanation of the tendency of ensembles to exhibit a spreaderror correlation but yet
Model Selection for Probabilistic Clustering Using CrossValidated Likelihood
 Statistics and Computing
, 1998
"... Crossvalidated likelihood is investigated as a tool for automatically determining the appropriate number of components (given the data) in finite mixture modelling, particularly in the context of modelbased probabilistic clustering. The conceptual framework for the crossvalidation approach to mod ..."
Abstract

Cited by 65 (4 self)
 Add to MetaCart
Crossvalidated likelihood is investigated as a tool for automatically determining the appropriate number of components (given the data) in finite mixture modelling, particularly in the context of modelbased probabilistic clustering. The conceptual framework for the crossvalidation approach to model selection is direct in the sense that models are judged directly on their outofsample predictive performance. The method is applied to a wellknown clustering problem in the atmospheric science literature using historical records of upper atmosphere geopotential height in the Northern hemisphere. Crossvalidated likelihood provides strong evidence for three clusters in the data set, providing an objective confirmation of earlier results derived using nonprobabilistic clustering techniques. 1 Introduction Crossvalidation is a wellknown technique in supervised learning to select a model from a family of candidate models. Examples include selecting the best classification tree using cr...
Model Uncertainty in CrossCountry Growth Regressions
 Journal of Applied Econometrics
, 2001
"... We investigate the issue of model uncertainty in crosscountry growth regressions using Bayesian Model Averaging (BMA). We find that the posterior probability is spread widely among many models, suggesting the superiority of BMA over choosing any single model. Outofsample predictive results suppor ..."
Abstract

Cited by 60 (3 self)
 Add to MetaCart
We investigate the issue of model uncertainty in crosscountry growth regressions using Bayesian Model Averaging (BMA). We find that the posterior probability is spread widely among many models, suggesting the superiority of BMA over choosing any single model. Outofsample predictive results support this claim. In contrast to Levine and Renelt (1992), our results broadly support the more ‘optimistic ’ conclusion of SalaiMartin (1997b), namely that some variables are important regressors for explaining crosscountry growth patterns. However, care should be taken in the methodology employed. The approach proposed here is firmly grounded in statistical theory and immediately leads to posterior and predictive inference. Copyright © 2001 John Wiley & Sons, Ltd. 1.
On the Fit and Forecasting Performance of NewKeynesian Models
, 2004
"... The paper provides new tools for the evaluation of DSGE models, and applies it to a largescale New Keynesian dynamic stochastic general equilibrium (DSGE) model with price and wage stickiness and capital accumulation. Specifically, we approximate the DSGE model by a vector autoregression (VAR), and ..."
Abstract

Cited by 58 (0 self)
 Add to MetaCart
The paper provides new tools for the evaluation of DSGE models, and applies it to a largescale New Keynesian dynamic stochastic general equilibrium (DSGE) model with price and wage stickiness and capital accumulation. Specifically, we approximate the DSGE model by a vector autoregression (VAR), and then systematically relax the implied crossequation restrictions. Let λ denote the extent to which the restrictions are being relaxed. We document how the in and outofsample fit of the resulting specification (DSGEVAR) changes as a function of λ. Furthermore, we learn about the precise nature of the misspecification by comparing the DSGE model’s impulse responses to structural shocks with those of the bestfitting DSGEVAR. We find that the degree of misspecification in largescale DSGE models is no longer so large to prevent their use in daytoday policy analysis, yet it is not small enough that it cannot be ignored. (JEL C11, C32, C53)
Bayesian analysis of DSGE models
 ECONOMETRICS REVIEW
, 2007
"... This paper reviews Bayesian methods that have been developed in recent years to estimate and evaluate dynamic stochastic general equilibrium (DSGE) models. We consider the estimation of linearized DSGE models, the evaluation of models based on Bayesian model checking, posterior odds comparisons, and ..."
Abstract

Cited by 53 (2 self)
 Add to MetaCart
This paper reviews Bayesian methods that have been developed in recent years to estimate and evaluate dynamic stochastic general equilibrium (DSGE) models. We consider the estimation of linearized DSGE models, the evaluation of models based on Bayesian model checking, posterior odds comparisons, and comparisons to vector autoregressions, as well as the nonlinear estimation based on a secondorder accurate model solution. These methods are applied to data generated from correctly specified and misspecified linearized DSGE models, and a DSGE model that was solved with a secondorder perturbation method. (JEL C11, C32, C51, C52)
Model Selection and Accounting for Model Uncertainty in Linear Regression Models
, 1993
"... We consider the problems of variable selection and accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. The complete B ..."
Abstract

Cited by 47 (6 self)
 Add to MetaCart
We consider the problems of variable selection and accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. The complete Bayesian solution to this problem involves averaging over all possible models when making inferences about quantities of interest. This approach is often not practical. In this paper we offer two alternative approaches. First we describe a Bayesian model selection algorithm called "Occam's "Window" which involves averaging over a reduced set of models. Second, we describe a Markov chain Monte Carlo approach which directly approximates the exact solution. Both these model averaging procedures provide better predictive performance than any single model which might reasonably have been selected. In the extreme case where there are many candidate predictors but there is no relationship between any of them and the response, standard variable selection procedures often choose some subset of variables that yields a high R² and a highly significant overall F value. We refer to this unfortunate phenomenon as "Freedman's Paradox" (Freedman, 1983). In this situation, Occam's vVindow usually indicates the null model as the only one to be considered, or else a small number of models including the null model, thus largely resolving the paradox.
Bayesian model averaging
 STAT.SCI
, 1999
"... Standard statistical practice ignores model uncertainty. Data analysts typically select a model from some class of models and then proceed as if the selected model had generated the data. This approach ignores the uncertainty in model selection, leading to overcon dent inferences and decisions tha ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
Standard statistical practice ignores model uncertainty. Data analysts typically select a model from some class of models and then proceed as if the selected model had generated the data. This approach ignores the uncertainty in model selection, leading to overcon dent inferences and decisions that are more risky than one thinks they are. Bayesian model averaging (BMA) provides a coherent mechanism for accounting for this model uncertainty. Several methods for implementing BMA haverecently emerged. We discuss these methods and present anumber of examples. In these examples, BMA provides improved outofsample predictive performance. We also provide a catalogue of
Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance
 In Bayesian Statistics 5
, 1995
"... Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significanc ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significance tests to select a single model, and then to make inference conditionally on the selected model. However, this ignores model uncertainty, which can be substantial. We review the standard Bayesian model averaging solution to this problem and extend it to survival analysis, introducing partial Bayes factors to do so for the Cox proportional hazards model. In two examples, taking account of model uncertainty enhances predictive performance, to an extent that could be clinically useful. 1 Introduction From 1974 to 1984 the Mayo Clinic conducted a doubleblinded randomized clinical trial involving 312 patients to compare the drug DPCA with a placebo in the treatment of primary biliary cirrhosis...
Probabilistic forecasts, calibration and sharpness
 Journal of the Royal Statistical Society Series B
, 2007
"... Summary. Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive dis ..."
Abstract

Cited by 38 (15 self)
 Add to MetaCart
Summary. Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive distributions subject to calibration. Calibration refers to the statistical consistency between the distributional forecasts and the observations and is a joint property of the predictions and the events that materialize. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts only. A simple theoretical framework allows us to distinguish between probabilistic calibration, exceedance calibration and marginal calibration. We propose and study tools for checking calibration and sharpness, among them the probability integral transform histogram, marginal calibration plots, the sharpness diagram and proper scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probabilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest. In combination with crossvalidation or in the time series context, our proposal provides very general, nonparametric alternatives to the use of information criteria for model diagnostics and model selection.