Results 21  30
of
1,046
Theory Refinement on Bayesian Networks
, 1991
"... Theory refinement is the task of updating a domain theory in the light of new cases, to be done automatically or with some expert assistance. The problem of theory refinement under uncertainty is reviewed here in the context of Bayesian statistics, a theory of belief revision. The problem is reduced ..."
Abstract

Cited by 184 (5 self)
 Add to MetaCart
Theory refinement is the task of updating a domain theory in the light of new cases, to be done automatically or with some expert assistance. The problem of theory refinement under uncertainty is reviewed here in the context of Bayesian statistics, a theory of belief revision. The problem is reduced to an incremental learning task as follows: the learning system is initially primed with a partial theory supplied by a domain expert, and thereafter maintains its own internal representation of alternative theories which is able to be interrogated by the domain expert and able to be incrementally refined from data. Algorithms for refinement of Bayesian networks are presented to illustrate what is meant by "partial theory", "alternative theory representation ", etc. The algorithms are an incremental variant of batch learning algorithms from the literature so can work well in batch and incremental mode. 1 Introduction Theory refinement is the task of updating a domain theory in the light of...
Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
 Machine Learning
, 1997
"... We discuss Bayesian methods for learning Bayesian networks when data sets are incomplete. In particular, we examine asymptotic approximations for the marginal likelihood of incomplete data given a Bayesian network. We consider the Laplace approximation and the less accurate but more efficient BIC/MD ..."
Abstract

Cited by 178 (10 self)
 Add to MetaCart
We discuss Bayesian methods for learning Bayesian networks when data sets are incomplete. In particular, we examine asymptotic approximations for the marginal likelihood of incomplete data given a Bayesian network. We consider the Laplace approximation and the less accurate but more efficient BIC/MDL approximation. We also consider approximations proposed by Draper (1993) and Cheeseman and Stutz (1995). These approximations are as efficient as BIC/MDL, but their accuracy has not been studied in any depth. We compare the accuracy of these approximations under the assumption that the Laplace approximation is the most accurate. In experiments using synthetic data generated from discrete naiveBayes models having a hidden root node, we find that (1) the BIC/MDL measure is the least accurate, having a bias in favor of simple models, and (2) the Draper and CS measures are the most accurate. 1
Analysis Of Multiresolution Image Denoising Schemes Using GeneralizedGaussian Priors
 IEEE TRANS. INFO. THEORY
, 1998
"... In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaussian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavytailed priors. This allows us to ..."
Abstract

Cited by 177 (9 self)
 Add to MetaCart
In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaussian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavytailed priors. This allows us to show a simple relationship between differentiability of the logprior at zero and the sparsity of the estimates, as well as an equivalence between universal thresholding schemes and Bayesian estimation using a certain Generalized Gaussian prior.
Bayesian Experimental Design: A Review
 Statistical Science
, 1995
"... This paper reviews the literature on Bayesian experimental design, both for linear and nonlinear models. A unified view of the topic is presented by putting experimental design in a decision theoretic framework. This framework justifies many optimality criteria, and opens new possibilities. Various ..."
Abstract

Cited by 171 (1 self)
 Add to MetaCart
This paper reviews the literature on Bayesian experimental design, both for linear and nonlinear models. A unified view of the topic is presented by putting experimental design in a decision theoretic framework. This framework justifies many optimality criteria, and opens new possibilities. Various design criteria become part of a single, coherent approach.
Genomic control for association studies
 Biometrics
, 1999
"... you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncommercial use. Please contact the publisher regarding any further use of this work. Publisher contact inform ..."
Abstract

Cited by 168 (5 self)
 Add to MetaCart
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncommercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
Learning with Labeled and Unlabeled Data
, 2001
"... In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as well as ..."
Abstract

Cited by 165 (3 self)
 Add to MetaCart
In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as well as numerous suggestions for potential future work. Therefore, this work contains more speculative and partly subjective material than the reader might expect from a literature review. We give a rigorous definition of the problem and relate it to supervised and unsupervised learning. The crucial role of prior knowledge is put forward, and we discuss the important notion of inputdependent regularization. We postulate a number of baseline methods, being algorithms or algorithmic schemes which can more or less straightforwardly be applied to the problem, without the need for genuinely new concepts. However, some of them might serve as basis for a genuine method. In the literature revi...
Hidden Markov models for sequence analysis: extension and analysis of the basic method
, 1996
"... Hidden Markov models (HMMs) are a highly effective means of modeling a family of unaligned sequences or a common motif within a set of unaligned sequences. The trained HMM can then be used for discrimination or multiple alignment. The basic mathematical description of an HMM and its expectationmaxi ..."
Abstract

Cited by 164 (20 self)
 Add to MetaCart
Hidden Markov models (HMMs) are a highly effective means of modeling a family of unaligned sequences or a common motif within a set of unaligned sequences. The trained HMM can then be used for discrimination or multiple alignment. The basic mathematical description of an HMM and its expectationmaximization training procedure is relatively straightforward. In this paper, we review the mathematical extensions and heuristics that move the method from the theoretical to the practical. Then, we experimentally analyze the effectiveness of model regularization, dynamic model modification, and optimization strategies. Finally it is demonstrated on the SH2 domain how a domain can be found from unaligned sequences using a special model type. The experimental work was completed with the aid of the Sequence Alignment and Modeling software suite. 1 Introduction Since their introduction to the computational biology community (Haussler et al., 1993; Krogh et al., 1994a), hidden Markov models (HMMs...
A Model of Inductive Bias Learning
 Journal of Artificial Intelligence Research
, 2000
"... A major problem in machine learning is that of inductive bias: how to choose a learner's hypothesis space so that it is large enough to contain a solution to the problem being learnt, yet small enough to ensure reliable generalization from reasonablysized training sets. Typically such bias is suppl ..."
Abstract

Cited by 143 (0 self)
 Add to MetaCart
A major problem in machine learning is that of inductive bias: how to choose a learner's hypothesis space so that it is large enough to contain a solution to the problem being learnt, yet small enough to ensure reliable generalization from reasonablysized training sets. Typically such bias is supplied by hand through the skill and insights of experts. In this paper a model for automatically learning bias is investigated. The central assumption of the model is that the learner is embedded within an environment of related learning tasks. Within such an environment the learner can sample from multiple tasks, and hence it can search for a hypothesis space that contains good solutions to many of the problems in the environment. Under certain restrictions on the set of all hypothesis spaces available to the learner, we show that a hypothesis space that performs well on a sufficiently large number of training tasks will also perform well when learning novel tasks in the same environment. Exp...
S.: Hidden Markov Model Induction by Bayesian Model Merging
 Advances in Neural Information Processing Systems 5
, 1993
"... This paper describes a technique for learning both the number of states and the topology of Hidden Markov Models from examples. The induction process starts with the most specific model consistent with the training data and generalizes by successively merging states. Both the choice of states to mer ..."
Abstract

Cited by 135 (2 self)
 Add to MetaCart
This paper describes a technique for learning both the number of states and the topology of Hidden Markov Models from examples. The induction process starts with the most specific model consistent with the training data and generalizes by successively merging states. Both the choice of states to merge and the stopping criterion are guided by the Bayesian posterior probability. We compare our algorithm with the BaumWelch method of estimating fixedsize models, and find that it can induce minimal HMMs from data in cases where fixed estimation does not converge or requires redundant parameters to converge. 1
Bayesian color constancy
 Journal of the Optical Society of America A
, 1997
"... The problem of color constancy may be solved if we can recover the physical properties of illuminants and surfaces from photosensor responses. We consider this problem within the framework of Bayesian decision theory. First, we model the relation among illuminants, surfaces, and photosensor response ..."
Abstract

Cited by 135 (18 self)
 Add to MetaCart
The problem of color constancy may be solved if we can recover the physical properties of illuminants and surfaces from photosensor responses. We consider this problem within the framework of Bayesian decision theory. First, we model the relation among illuminants, surfaces, and photosensor responses. Second, we construct prior distributions that describe the probability that particular illuminants and surfaces exist in the world. Given a set of photosensor responses, we can then use Bayes’s rule to compute the posterior distribution for the illuminants and the surfaces in the scene. There are two widely used methods for obtaining a single best estimate from a posterior distribution. These are maximum a posteriori (MAP) and minimum meansquarederror (MMSE) estimation. We argue that neither is appropriate for perception problems. We describe a new estimator, which we call the maximum local mass (MLM) estimate, that integrates local probability density. The new method uses an optimality criterion that is appropriate for perception tasks: It finds the most probable approximately correct answer. For the case of low observation noise, we provide an efficient approximation. We develop the MLM estimator for the colorconstancy problem in which flat matte surfaces are uniformly illuminated. In simulations we show that the MLM method performs better than the MAP estimator and better than a number of standard colorconstancy algorithms. We note conditions under which even the optimal estimator produces poor estimates: when the spectral properties of the surfaces in the scene are biased. © 1997 Optical Society of America [S07403232(97)016074] 1.