Results 1  10
of
1,046
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 981 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Monte Carlo Statistical Methods
, 1998
"... This paper is also the originator of the Markov Chain Monte Carlo methods developed in the following chapters. The potential of these two simultaneous innovations has been discovered much latter by statisticians (Hastings 1970; Geman and Geman 1984) than by of physicists (see also Kirkpatrick et al. ..."
Abstract

Cited by 900 (23 self)
 Add to MetaCart
This paper is also the originator of the Markov Chain Monte Carlo methods developed in the following chapters. The potential of these two simultaneous innovations has been discovered much latter by statisticians (Hastings 1970; Geman and Geman 1984) than by of physicists (see also Kirkpatrick et al. 1983). 5.5.5 ] PROBLEMS 211
The Architecture of Cognition
, 1983
"... Spanning seven orders of magnitude: a challenge for ..."
Abstract

Cited by 855 (28 self)
 Add to MetaCart
Spanning seven orders of magnitude: a challenge for
Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge Univ
, 1998
"... by ..."
Probabilistic Inference Using Markov Chain Monte Carlo Methods
, 1993
"... Probabilistic inference is an attractive approach to uncertain reasoning and empirical learning in artificial intelligence. Computational difculties arise, however, because probabilistic models with the necessary realism and flexibility lead to complex distributions over highdimensional spaces. Rel ..."
Abstract

Cited by 567 (20 self)
 Add to MetaCart
Probabilistic inference is an attractive approach to uncertain reasoning and empirical learning in artificial intelligence. Computational difculties arise, however, because probabilistic models with the necessary realism and flexibility lead to complex distributions over highdimensional spaces. Related problems in other fields have been tackled using Monte Carlo methods based on sampling using Markov chains, providing a rich array of techniques that can be applied to problems in artificial intelligence. The "Metropolis algorithm" has been used to solve difficult problems in statistical physics for over forty years, and, in the last few years, the related method of "Gibbs sampling" has been applied to problems of statistical inference. Concurrently, an alternative method for solving problems in statistical physics by means of dynamical simulation has been developed as well, and has recently been unified with the Metropolis algorithm to produce the "hybrid Monte Carlo" method. In computer science, Markov chain sampling is the basis of the heuristic optimization technique of "simulated annealing", and has recently been used in randomized algorithms for approximate counting of large sets. In this review, I outline the role of probabilistic inference in artificial intelligence, and present the theory of Markov chains, and describe various Markov chain Monte Carlo algorithms, along with a number of supporting techniques. I try to present a comprehensive picture of the range of methods that have been developed, including techniques from the varied literature that have not yet seen wide application in artificial intelligence, but which appear relevant. As illustrative examples, I use the problems of probabilitic inference in expert systems, discovery of latent classes from data, and Bayesian learning for neural networks.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 564 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 552 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer basis functions than a comparable SVM while oering a number of additional advantages. These include the benets of probabilistic predictions, automatic estimation of `nuisance' parameters, and the facility to utilise arbitrary basis functions (e.g. non`Mercer' kernels).
Hidden Markov models in computational biology: applications to protein modeling
 JOURNAL OF MOLECULAR BIOLOGY
, 1994
"... Hidden.Markov Models (HMMs) are applied t.0 the problems of statistical modeling, database searching and multiple sequence alignment of protein families and protein domains. These methods are demonstrated the on globin family, the protein kinase catalytic domain, and the EFhand calcium binding moti ..."
Abstract

Cited by 525 (35 self)
 Add to MetaCart
Hidden.Markov Models (HMMs) are applied t.0 the problems of statistical modeling, database searching and multiple sequence alignment of protein families and protein domains. These methods are demonstrated the on globin family, the protein kinase catalytic domain, and the EFhand calcium binding motif. In each case the parameters of an HMM are estimated from a training set of unaligned sequences. After the HMM is built, it is used to obtain a multiple alignment of all the training sequences. It is also used to search the. SWISSPROT 22 database for other sequences. that are members of the given protein family, or contain the given domain. The Hi " produces multiple alignments of good quality that agree closely with the alignments produced by programs that incorporate threedimensional structural information. When employed in discrimination tests (by examining how closely the sequences in a database fit the globin, kinase and EFhand HMMs), the '\ HMM is able to distinguish members of these families from nonmembers with a high degree of accuracy. Both the HMM and PROFILESEARCH (a technique used to search for relationships between a protein sequence and multiply aligned sequences) perform better in these tests than PROSITE (a dictionary of sites and patterns in proteins). The HMM appecvs to have a slight advantage over PROFILESEARCH in terms of lower rates of false
Pictorial Structures for Object Recognition
 IJCV
, 2003
"... In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance ..."
Abstract

Cited by 524 (15 self)
 Add to MetaCart
In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by springlike connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. We use these models to address the problem of detecting an object in an image as well as the problem of learning an object model from training examples, and present efficient algorithms for both these problems. We demonstrate the techniques by learning models that represent faces and human bodies and using the resulting models to locate the corresponding objects in novel images.
Bayesian Interpolation
 Neural Computation
, 1991
"... Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. T ..."
Abstract

Cited by 520 (18 self)
 Add to MetaCart
Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. The concepts and methods described are quite general and can be applied to many other problems. Regularising constants are set by examining their posterior probability distribution. Alternative regularisers (priors) and alternative basis sets are objectively compared by evaluating the evidence for them. `Occam's razor' is automatically embodied by this framework. The way in which Bayes infers the values of regularising constants and noise levels has an elegant interpretation in terms of the effective number of parameters determined by the data set. This framework is due to Gull and Skilling. 1 Data modelling and Occam's razor In science, a central task is to develop and compare models to a...