Results 1  10
of
283
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 417 (4 self)
 Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDPrelated methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
Synchronization and linearity: an algebra for discrete event systems
, 2001
"... The first edition of this book was published in 1992 by Wiley (ISBN 0 471 93609 X). Since this book is now out of print, and to answer the request of several colleagues, the authors have decided to make it available freely on the Web, while retaining the copyright, for the benefit of the scientific ..."
Abstract

Cited by 250 (10 self)
 Add to MetaCart
The first edition of this book was published in 1992 by Wiley (ISBN 0 471 93609 X). Since this book is now out of print, and to answer the request of several colleagues, the authors have decided to make it available freely on the Web, while retaining the copyright, for the benefit of the scientific community. Copyright Statement This electronic document is in PDF format. One needs Acrobat Reader (available freely for most platforms from the Adobe web site) to benefit from the full interactive machinery: using the package hyperref by Sebastian Rahtz, the table of contents and all LATEX crossreferences are automatically converted into clickable hyperlinks, bookmarks are generated automatically, etc.. So, do not hesitate to click on references to equation or section numbers, on items of thetableofcontents and of the index, etc.. One may freely use and print this document for one’s own purpose or even distribute it freely, but not commercially, provided it is distributed in its entirety and without modifications, including this preface and copyright statement. Any use of thecontents should be acknowledged according to the standard scientific practice. The
PEGASUS: A policy search method for large MDPs and POMDPs
 In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence
, 2000
"... We propose a new approach to the problem of searching a space of policies for a Markov decision process (MDP) or a partially observable Markov decision process (POMDP), given a model. Our approach is based on the following observation: Any (PO)MDP can be transformed into an "equivalent" POMDP ..."
Abstract

Cited by 207 (7 self)
 Add to MetaCart
We propose a new approach to the problem of searching a space of policies for a Markov decision process (MDP) or a partially observable Markov decision process (POMDP), given a model. Our approach is based on the following observation: Any (PO)MDP can be transformed into an "equivalent" POMDP in which all state transitions (given the current state and action) are deterministic. This reduces the general problem of policy search to one in which we need only consider POMDPs with deterministic transitions. We give a natural way of estimating the value of all policies in these transformed POMDPs. Policy search is then simply performed by searching for a policy with high estimated value. We also establish conditions under which our value estimates will be good, recovering theoretical results similar to those of Kearns, Mansour and Ng [7], but with "sample complexity" bounds that have only a polynomial rather than exponential dependence on the horizon time. Our method appl...
Planning Under Time Constraints in Stochastic Domains
 ARTIFICIAL INTELLIGENCE
, 1993
"... We provide a method, based on the theory of Markov decision processes, for efficient planning in stochastic domains. Goals are encoded as reward functions, expressing the desirability of each world state; the planner must find a policy (mapping from states to actions) that maximizes future reward ..."
Abstract

Cited by 162 (19 self)
 Add to MetaCart
We provide a method, based on the theory of Markov decision processes, for efficient planning in stochastic domains. Goals are encoded as reward functions, expressing the desirability of each world state; the planner must find a policy (mapping from states to actions) that maximizes future rewards. Standard goals of achievement, as well as goals of maintenance and prioritized combinations of goals, can be specified in this way. An optimal policy can be found using existing methods, but these methods require time at best polynomial in the number of states in the domain, where the number of states is exponential in the number of propositions (or state variables). By using information about the starting state, the reward function, and the transition probabilities of the domain, we restrict the planner's attention to a set of world states that are likely to be encountered in satisfying the goal. Using this restricted set of states, the planner can generate more or less complete ...
Asynchronous Stochastic Approximation and QLearning
 Machine Learning
, 1994
"... Abstract. We provide some general results on the convergence of a class of stochastic approximation algorithms and their parallel and asynchronous variants. We then use these results to study the Qlearning algorithm, a reinforcement learning method for solving Markov decision problems, and establis ..."
Abstract

Cited by 151 (3 self)
 Add to MetaCart
Abstract. We provide some general results on the convergence of a class of stochastic approximation algorithms and their parallel and asynchronous variants. We then use these results to study the Qlearning algorithm, a reinforcement learning method for solving Markov decision problems, and establish its convergence under conditions more general than previously available. Keywords: Reinforcement learning, Qlearning, dynamic programming, stochastic approximation 1.
Minimizing the Average Cost of Paging Under Delay Constraints
 Wireless Networks
, 1995
"... Efficient paging procedures help minimize the amount of bandwidth expended in locating a mobile unit. Given a probability distribution on user location, it is shown that the optimal paging strategy which minimizes the expected number of locations polled E[L] is to query each location sequentially in ..."
Abstract

Cited by 104 (12 self)
 Add to MetaCart
Efficient paging procedures help minimize the amount of bandwidth expended in locating a mobile unit. Given a probability distribution on user location, it is shown that the optimal paging strategy which minimizes the expected number of locations polled E[L] is to query each location sequentially in order of decreasing probability. However, since sequential search over many locations may impose unacceptable polling delay, D, optimal paging subject to delay constraints is considered. It is shown that substantial reductions in E[L] can be had even after moderate constraints are imposed on acceptable D (i.e., D 3). Since all methods of mobility management eventually reduce to considering a timevarying probability distribution on user location, this work should be applicable to a wide range of problems in the area. most notably those with additive cost structures. 1 Introduction Paging and registration are necessary features of wireless communication networks because user locations va...
KernelBased Reinforcement Learning
 Machine Learning
, 1999
"... We present a kernelbased approach to reinforcement learning that overcomes the stability problems of temporaldifference learning in continuous statespaces. First, our algorithm converges to a unique solution of an approximate Bellman's equation regardless of its initialization values. Second, the ..."
Abstract

Cited by 102 (1 self)
 Add to MetaCart
We present a kernelbased approach to reinforcement learning that overcomes the stability problems of temporaldifference learning in continuous statespaces. First, our algorithm converges to a unique solution of an approximate Bellman's equation regardless of its initialization values. Second, the method is consistent in the sense that the resulting policy converges asymptotically to the optimal policy. Parametric value function estimates such as neural networks do not possess this property. Our kernelbased approach also allows us to show that the limiting distribution of the value function estimate is a Gaussian process. This information is useful in studying the biasvariance tradeo in reinforcement learning. We find that all reinforcement learning approaches to estimating the value function, parametric or nonparametric, are subject to a bias. This bias is typically larger in reinforcement learning than in a comparable regression problem.
Labeled RTDP: Improving the convergence of realtime dynamic programming
 In ICAPS’03, 12–21
"... RTDP is a recent heuristicsearch DP algorithm for solving nondeterministic planning problems with full observability. In relation to other dynamic programming methods, RTDP has two benefits: first, it does not have to evaluate the entire state space in order to deliver an optimal policy, and secon ..."
Abstract

Cited by 101 (9 self)
 Add to MetaCart
RTDP is a recent heuristicsearch DP algorithm for solving nondeterministic planning problems with full observability. In relation to other dynamic programming methods, RTDP has two benefits: first, it does not have to evaluate the entire state space in order to deliver an optimal policy, and second, it can often deliver good policies pretty fast. On the other hand, RTDP final convergence is slow. In this paper we introduce a labeling scheme into RTDP that speeds up its convergence while retaining its good anytime behavior. The idea is to label a state s as solved when the heuristic values, and thus, the greedy policy defined by them, have converged over s and the states that can be reached from s with the greedy policy. While due to the presence of cycles, these labels cannot be computed in a recursive, bottomup fashion in general, we show nonetheless that they can be computed quite fast, and that the overhead is compensated by the recomputations avoided. In addition, when the labeling procedure cannot label a state as solved, it improves the heuristic value of a relevant state. This results in the number of Labeled RTDP trials needed for convergence, unlike the number of RTDP trials, to be bounded. From a practical point of view, Labeled RTDP (LRTDP) converges orders of magnitude faster than RTDP, and faster also than another recent heuristicsearch DP algorithm, LAO*. Moreover, LRTDP often converges faster than value iteration, even with the heuristic h =0, thus suggesting that LRTDP has a quite general scope.
Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical Results
, 1996
"... This paper presents a detailed study of average reward reinforcement learning, an undiscounted optimality framework that is more appropriate for cyclical tasks than the much better studied discounted framework. A wide spectrum of average reward algorithms are described, ranging from synchronous dyna ..."
Abstract

Cited by 99 (12 self)
 Add to MetaCart
This paper presents a detailed study of average reward reinforcement learning, an undiscounted optimality framework that is more appropriate for cyclical tasks than the much better studied discounted framework. A wide spectrum of average reward algorithms are described, ranging from synchronous dynamic programming methods to several (provably convergent) asynchronous algorithms from optimal control and learning automata. A general sensitive discount optimality metric called ndiscountoptimality is introduced, and used to compare the various algorithms. The overview identifies a key similarity across several asynchronous algorithms that is crucial to their convergence, namely independent estimation of the average reward and the relative values. The overview also uncovers a surprising limitation shared by the different algorithms: while several algorithms can provably generate gainoptimal policies that maximize average reward, none of them can reliably filter these to produce biasoptimal (or Toptimal) policies that also maximize the finite reward to absorbing goal states. This paper also presents a detailed empirical study of Rlearning, an average reward reinforcement learning method, using two empirical testbeds: a stochastic grid world domain and a simulated robot environment. A detailed sensitivity analysis of Rlearning is carried out to test its dependence on learning rates and exploration levels. The results suggest that Rlearning is quite sensitive to exploration strategies, and can fall into suboptimal limit cycles. The performance of Rlearning is also compared with that of Qlearning, the best studied discounted RL method. Here, the results suggest that Rlearning can be finetuned to give better performance than Qlearning in both domains.