Results 1 
5 of
5
Proving theorems about Java and the JVM with ACL2
 Models, Algebras and Logic of Engineering Software
, 2003
"... We describe a methodology for proving theorems mechanically about Java methods. The theorem prover used is the ACL2 system, an industrialstrength version of the BoyerMoore theorem prover. An operational semantics for a substantial subset of the Java Virtual Machine (JVM) has been defined in ACL2. ..."
Abstract

Cited by 19 (10 self)
 Add to MetaCart
We describe a methodology for proving theorems mechanically about Java methods. The theorem prover used is the ACL2 system, an industrialstrength version of the BoyerMoore theorem prover. An operational semantics for a substantial subset of the Java Virtual Machine (JVM) has been defined in ACL2. Theorems are proved about Java methods and classes by compiling them with javac and then proving the corresponding theorem about the JVM. Certain automatically applied strategies are implemented with rewrite rules (and other proofguiding pragmas) in ACL2 “books” to control the theorem prover when operating on problems involving the JVM model. The Java Virtual Machine or JVM [27] is the basic abstraction Java [17] implementors are expected to respect. We speculate that the JVM is an appropriate level of abstraction at which to model Java programs with the intention of mechanically verifying their properties. The most complex features of the Java subset we handle – construction and initialization of new objects, synchronization, thread management, and virtual method invocation – are all supported directly and with full abstraction as single atomic instructions in the JVM. The complexity of verifying JVM bytecode program stems from the complexity of Java’s semantics, not
Efficient execution in an automated reasoning environment
 Journal of Functional Programming
, 2006
"... Abstract We describe a method to permit the user of a mathematical logic to write elegant logical definitions while allowing sound and efficient execution. We focus on the ACL2 logic and automated reasoning environment. ACL2 is used by industrial researchers to describe microprocessor designs and ot ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
Abstract We describe a method to permit the user of a mathematical logic to write elegant logical definitions while allowing sound and efficient execution. We focus on the ACL2 logic and automated reasoning environment. ACL2 is used by industrial researchers to describe microprocessor designs and other complicated digital systems. Properties of the designs can be formally established with the theorem prover. But because ACL2 is also a functional programming language, the formal models can be executed as simulation engines. We implement features that afford these dual applications, namely formal proof and execution on industrial test suites. In particular, the features allow the user to install, in a logically sound way, alternative executable counterparts for logicallydefined functions. These alternatives are often much more efficient than the logically equivalent terms they replace. We discuss several applications of these features. 1 Introduction This paper is about a way to permit the functional programmer to prove efficientprograms correct. The idea is to allow the provision of two definitions of the program: an elegant definition that supports effective reasoning by a mechanizedtheorem prover, and an efficient definition for evaluation. A bridge of this sort,
A mechanized program verifier
 In IFIP Working Conference on the Program Verifier Challenge
, 2005
"... Abstract. In my view, the “verification problem ” is the theorem proving problem, restricted to a computational logic. My approach is: adopt a functional programming language, build a general purpose formal reasoning engine around it, integrate it into a program and proof development environment, an ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. In my view, the “verification problem ” is the theorem proving problem, restricted to a computational logic. My approach is: adopt a functional programming language, build a general purpose formal reasoning engine around it, integrate it into a program and proof development environment, and apply it to model and verify a wide variety of computing artifacts, usually modeled operationally within the functional programming language. Everything done in this approach is software verification since the models are runnable programs in a subset of an ANSI standard programming language (Common Lisp). But this approach is of interest to proponents of other approaches (e.g., verification of procedural programs or synthesis) because of the nature of the mathematics of computing. I summarize the progress so far using this approach, sketch the key research challenges ahead and describe my vision of the role and shape of a useful verification system. 1
Integrating CCG analysis into ACL2
 In Eighth International Workshop on Termination, August 2006. Part of FLOC ’06
"... ACL2 [6–8] is a powerful, industrial strength theorem proving system, which has been used on ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
ACL2 [6–8] is a powerful, industrial strength theorem proving system, which has been used on
Greg LavenderFormal Specification and Verification of a JVM and its Bytecode Verifier
, 2006
"... I would like to first thank my advisor J Strother Moore for his support and advice. He gave me just the right balance of freedom, encouragement, and direction for me to pursue the research work that leads to this dissertation. I am grateful to my committee members for their helpful feedbacks. Specia ..."
Abstract
 Add to MetaCart
I would like to first thank my advisor J Strother Moore for his support and advice. He gave me just the right balance of freedom, encouragement, and direction for me to pursue the research work that leads to this dissertation. I am grateful to my committee members for their helpful feedbacks. Special thanks are due to William Cook and David Hardin for their careful critique and helpful suggestions. I am in debt to Sandip Ray and Robert Krug for reading and commenting on drafts of this dissertation. The remaining errors are solely mine. I also thank my fellow members of the ACL2 research group at University of Texas for many things. These people helped to make my years in