Results 1  10
of
14
2005) Towards Characterizing Markov Equivalence Classes of Directed Acyclic Graphs with Latent Variables. UAI
 Proceedings of the 21th Conference on Uncertainty in Artificial Intelligence, AUAI
, 2005
"... It is well known that there may be many causal explanations that are consistent with a given set of data. Recent work has been done to represent the common aspects of these explanations into one representation. In this paper, we address what is less well known: how do the relationships common to eve ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
It is well known that there may be many causal explanations that are consistent with a given set of data. Recent work has been done to represent the common aspects of these explanations into one representation. In this paper, we address what is less well known: how do the relationships common to every causal explanation among the observed variables of some DAG process change in the presence of latent variables? Ancestral graphs provide a class of graphs that can encode conditional independence relations that arise in DAG models with latent and selection variables. In this paper we present a set of orientation rules that construct the Markov equivalence class representative for ancestral graphs, given a member of the equivalence class. These rules are sound and complete. We also show that when the equivalence class includes a DAG, the equivalence class representative is the essential graph for the said DAG.
Commentator: A frontend userinterface module for graphical and structural equation modeling
, 2010
"... ..."
Trygve Haavelmo and the Emergence of Causal Calculus
, 2012
"... Haavelmo was the first to recognize the capacity of economic models to guide policies. This paper describes some of the barriers that Haavelmo’s ideas have had (and still have) to overcome, and lays out a logical framework for capturing the relationships between theory, data and policy questions. Th ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Haavelmo was the first to recognize the capacity of economic models to guide policies. This paper describes some of the barriers that Haavelmo’s ideas have had (and still have) to overcome, and lays out a logical framework for capturing the relationships between theory, data and policy questions. The mathematical tools that emerge from this framework now enable investigators to answer complex policy and counterfactual questions using embarrassingly simple routines, some by mere inspection of the model’s structure. Several such problems are illustrated by examples, including misspecification tests, identification, mediation and introspection. Finally, we observe that modern economists are largely unaware of the benefits that Haavelmo’s ideas bestow upon them and, as a result, econometric research has not fully utilized modern advances in causal analysis. 1
Causal reasoning with ancestral graphs
, 2008
"... Causal reasoning is primarily concerned with what would happen to a system under external interventions. In particular, we are often interested in predicting the probability distribution of some random variables that would result if some other variables were forced to take certain values. One promin ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Causal reasoning is primarily concerned with what would happen to a system under external interventions. In particular, we are often interested in predicting the probability distribution of some random variables that would result if some other variables were forced to take certain values. One prominent approach to tackling this problem is based on causal Bayesian networks, using directed acyclic graphs as causal diagrams to relate postintervention probabilities to preintervention probabilities that are estimable from observational data. However, such causal diagrams are seldom fully testable given observational data. In consequence, many causal discovery algorithms based on datamining can only output an equivalence class of causal diagrams (rather than a single one). This paper is concerned with causal reasoning given an equivalence class of causal diagrams, represented by a (partial) ancestral graph. We present two main results. The first result extends Pearl (1995)’s celebrated docalculus to the context of ancestral graphs. In the second result, we focus on a key component of Pearl’s calculus—the property of invariance under interventions, and give stronger graphical conditions for this property than those implied by the first result. The second result also improves the earlier, similar results due to Spirtes et al. (1993).
The Foundations of Causal Inference
 SUBMITTED TO SOCIOLOGICAL METHODOLOGY.
, 2010
"... This paper reviews recent advances in the foundations of causal inference and introduces a systematic methodology for defining, estimating and testing causal claims in experimental and observational studies. It is based on nonparametric structural equation models (SEM) – a natural generalization of ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
This paper reviews recent advances in the foundations of causal inference and introduces a systematic methodology for defining, estimating and testing causal claims in experimental and observational studies. It is based on nonparametric structural equation models (SEM) – a natural generalization of those used by econometricians and social scientists in the 195060s, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring the effects of potential interventions (also called “causal effects” or “policy evaluation”), as well as direct and indirect effects (also known as “mediation”), in both linear and nonlinear systems. Finally, the paper clarifies the role of propensity score matching in causal analysis, defines the relationships between the structural and
Sequences of regressions and their independences
, 2012
"... Ordered sequences of univariate or multivariate regressions provide statistical modelsfor analysingdata fromrandomized, possiblysequential interventions, from cohort or multiwave panel studies, but also from crosssectional or retrospective studies. Conditional independences are captured by what we ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
Ordered sequences of univariate or multivariate regressions provide statistical modelsfor analysingdata fromrandomized, possiblysequential interventions, from cohort or multiwave panel studies, but also from crosssectional or retrospective studies. Conditional independences are captured by what we name regression graphs, provided the generated distribution shares some properties with a joint Gaussian distribution. Regression graphs extend purely directed, acyclic graphs by two types of undirected graph, one type for components of joint responses and the other for components of the context vector variable. We review the special features and the history of regression graphs, prove criteria for Markov equivalence anddiscussthenotion of simpler statistical covering models. Knowledgeof Markov equivalence provides alternative interpretations of a given sequence of regressions, is essential for machine learning strategies and permits to use the simple graphical criteria of regression graphs on graphs for which the corresponding criteria are in general more complex. Under the known conditions that a Markov equivalent directed acyclic graph exists for any given regression graph, we give a polynomial time algorithm to find one such graph.
P.: A transformational characterization of markov equivalence for directed acyclic graphs with latent variables
 In: Proc. of the 21st Conference on Uncertainty in Artificial Intelligence (UAI
, 2005
"... The conditional independence relations present in a data set usually admit multiple causal explanations — typically represented by directed graphs — which are Markov equivalent in that they entail the same conditional independence relations among the observed variables. Markov equivalence between di ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
The conditional independence relations present in a data set usually admit multiple causal explanations — typically represented by directed graphs — which are Markov equivalent in that they entail the same conditional independence relations among the observed variables. Markov equivalence between directed acyclic graphs (DAGs) has been characterized in various ways, each of which has been found useful for certain purposes. In particular, Chickering’s transformational characterization is useful in deriving properties shared by Markov equivalent DAGs, and, with certain generalization, is needed to justify a search procedure over Markov equivalence classes, known as the GES algorithm. Markov equivalence between DAGs with latent variables has also been characterized, in the spirit of Verma and Pearl (1990), via maximal ancestral graphs (MAGs). The latter can represent the observable conditional independence relations as well as some causal features of DAG models with latent variables. However, no characterization of Markov equivalent MAGs is yet available that is analogous to the transformational characterization for Markov equivalent DAGs. The main contribution of the current paper is to establish such a characterization for directed MAGs, which we expect will have similar uses as Chickering’s characterization does for DAGs. 1
Orientation rules for constructing markov equivalence classes for maximal ancestral graphs
, 2005
"... ..."
Identification and likelihood inference for recursive linear models with correlated errors
, 2007
"... In recursive linear models, the multivariate normal joint distribution of all variables exhibits a dependence structure induced by recursive systems of linear structural equations. Such models appear in particular in seemingly unrelated regressions, structural equation modelling, simultaneous equati ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In recursive linear models, the multivariate normal joint distribution of all variables exhibits a dependence structure induced by recursive systems of linear structural equations. Such models appear in particular in seemingly unrelated regressions, structural equation modelling, simultaneous equation systems, and in Gaussian graphical modelling. We show that recursive linear models that are ‘bowfree’ are wellbehaved statistical models, namely, they are everywhere identifiable and form curved exponential families. Here, ‘bowfree ’ refers to models satisfying the condition that if a variable x occurs in the structural equation for y, then the errors for x and y are uncorrelated. For the computation of maximum likelihood estimates in ‘bowfree ’ recursive linear models we introduce the Residual Iterative Conditional Fitting (RICF) algorithm. Compared to existing algorithms RICF is easily implemented requiring only least squares computations, has clear convergence properties, and finds parameter estimates in closed form whenever possible. 1