Results 1  10
of
523
Blind Identification and Equalization Based on SecondOrder Statistics: A Time Domain Approach
 IEEE Trans. Inform. Theory
, 1994
"... A new blind channel identification and equalization method is proposed that exploits the cyclostationarity of oversampled communication signals to achieve identification and equalization of possibly nonminimum phase (multipath) channels without using training signals. Unlike most adaptive blind equa ..."
Abstract

Cited by 207 (7 self)
 Add to MetaCart
(Show Context)
A new blind channel identification and equalization method is proposed that exploits the cyclostationarity of oversampled communication signals to achieve identification and equalization of possibly nonminimum phase (multipath) channels without using training signals. Unlike most adaptive blind equalization methods for which the convergence properties are often problematic, the channel estimation algorithm proposed here is asymptotically exact. Moreover, since it is based on secondorder statistics, the new approach may achieve equalization with fewer symbols than most techniques based only on higherorder statistics. Simulations have demonstrated promising performance of the proposed algorithm for the blind equalization of a threeray multipath channel.
A LeastSquares Approach to Blind Channel Identification
 IEEE Trans. Signal Processing
, 1995
"... Conventional blind channel idenffiication algorithm.q are based on channel outputs and knowledge of the probabilistic model of channel input. In some practical applications, however, the input statistical model may not be known, or there may not be sufficient data to obtain accurate enough estimates ..."
Abstract

Cited by 181 (7 self)
 Add to MetaCart
Conventional blind channel idenffiication algorithm.q are based on channel outputs and knowledge of the probabilistic model of channel input. In some practical applications, however, the input statistical model may not be known, or there may not be sufficient data to obtain accurate enough estimates of certain statistics. In this paper, we consider the system input to be an unknown deterministic signal and study the problem of blind identification of multichannel FIR systems without requiring the knowledge of the input statistical model. A new blind idenffiieation algorithm based solely on the system outputs is proposed. Necessary and sufficient identifiability conditions in terms of the multichannel systems and the determhfistie input signal are also presented.
Dimension Reduction by Local Principal Component Analysis
, 1997
"... Reducing or eliminating statistical redundancy between the components of highdimensional vector data enables a lowerdimensional representation without significant loss of information. Recognizing the limitations of principal component analysis (PCA), researchers in the statistics and neural networ ..."
Abstract

Cited by 130 (0 self)
 Add to MetaCart
Reducing or eliminating statistical redundancy between the components of highdimensional vector data enables a lowerdimensional representation without significant loss of information. Recognizing the limitations of principal component analysis (PCA), researchers in the statistics and neural network communities have developed nonlinear extensions of PCA. This article develops a local linear approach to dimension reduction that provides accurate representations and is fast to compute. We exercise the algorithms on speech and image data, and compare performance with PCA and with neural network implementations of nonlinear PCA. We find that both nonlinear techniques can provide more accurate representations than PCA and show that the local linear techniques outperform neural network implementations.
Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods
 Proc. IEEE
, 1998
"... this paper is to review developments in blind channel identification and estimation within the estimation theoretical framework. We have paid special attention to the issue of identifiability, which is at the center of all blind channel estimation problems. Various existing algorithms are classified ..."
Abstract

Cited by 127 (2 self)
 Add to MetaCart
(Show Context)
this paper is to review developments in blind channel identification and estimation within the estimation theoretical framework. We have paid special attention to the issue of identifiability, which is at the center of all blind channel estimation problems. Various existing algorithms are classified into the momentbased and the maximum likelihood (ML) methods. We further divide these algorithms based on the modeling of the input signal. If input is assumed to be random with prescribed statistics (or distributions), the corresponding blind channel estimation schemes are considered to be statistical. On the other hand, if the source does not have a statistical description, or although the source is random but the statistical properties of the source are not exploited, the corresponding estimation algorithms are classified as deterministic. Fig. 2 shows a map for different classes of algorithms and the organization of the paper.
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regressionbased approaches
 IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
, 2012
"... Abstract—Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). H ..."
Abstract

Cited by 104 (34 self)
 Add to MetaCart
(Show Context)
Abstract—Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, illposed
Blind Separation of Synchronous CoChannel Digital Signals Using an Antenna Array. Part I. Algorithms
 IEEE Transactions on Signal Processing
, 1995
"... We propose a maximumlikelihood approach for separating and estimating multiple synchronous digital signals arriving at an antenna array. The spatial response of the array is assumed to be known imprecisely or unknown. We exploit the finite alphabet (FA) property of digital signals to simultaneou ..."
Abstract

Cited by 92 (6 self)
 Add to MetaCart
(Show Context)
We propose a maximumlikelihood approach for separating and estimating multiple synchronous digital signals arriving at an antenna array. The spatial response of the array is assumed to be known imprecisely or unknown. We exploit the finite alphabet (FA) property of digital signals to simultaneously determine the array response and the symbol sequence for each signal. Uniqueness of the estimates is established for signals with linear modulation formats. We introduce a signal detection technique based on the FA property which is different from a standard linear combiner. Computationally efficient algorithms for both block and recursive estimation of the signals are presented. This new approach is applicable to an unknown array geometry and propagation environment, which is particularly useful in wireless communication systems. Simulation results demonstrate its promising performance. Email: talwar@sccm.stanford.edu, Ph: (415) 7230061, Fax: (415) 7232411. This work was suppor...
Multichannel Blind Deconvolution: Fir Matrix Algebra And Separation Of Multipath Mixtures
, 1996
"... A general tool for multichannel and multipath problems is given in FIR matrix algebra. With Finite Impulse Response (FIR) filters (or polynomials) assuming the role played by complex scalars in traditional matrix algebra, we adapt standard eigenvalue routines, factorizations, decompositions, and mat ..."
Abstract

Cited by 89 (0 self)
 Add to MetaCart
A general tool for multichannel and multipath problems is given in FIR matrix algebra. With Finite Impulse Response (FIR) filters (or polynomials) assuming the role played by complex scalars in traditional matrix algebra, we adapt standard eigenvalue routines, factorizations, decompositions, and matrix algorithms for use in multichannel /multipath problems. Using abstract algebra/group theoretic concepts, information theoretic principles, and the Bussgang property, methods of single channel filtering and source separation of multipath mixtures are merged into a general FIR matrix framework. Techniques developed for equalization may be applied to source separation and vice versa. Potential applications of these results lie in neural networks with feedforward memory connections, wideband array processing, and in problems with a multiinput, multioutput network having channels between each source and sensor, such as source separation. Particular applications of FIR polynomial matrix alg...
Hyperspectral subspace identification
 IEEE Trans. Geosci. Remote Sens
, 2008
"... Abstract—Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performanc ..."
Abstract

Cited by 86 (22 self)
 Add to MetaCart
Abstract—Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square errorbased approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. Stateoftheart performance of the proposed method is illustrated by using simulated and real hyperspectral images. Index Terms—Dimensionality reduction, hyperspectral imagery, hyperspectral signal subspace identification by minimum error (HySime), hyperspectral unmixing, linear mixture, minimum mean square error (mse), subspace identification. I.
Blind Adaptive Interference Suppression For DirectSequence CDMA
 IEEE TRANS. COMMUN
, 1994
"... Direct Sequence (DS) Code Division Multiple Access (CDMA) is a promising technology for wireless environments with multiple simultaneous transmissions because of several features: asynchronous multiple access, robustness to frequency selective fading, and multipath combining. The capacity ..."
Abstract

Cited by 82 (7 self)
 Add to MetaCart
(Show Context)
Direct Sequence (DS) Code Division Multiple Access (CDMA) is a promising technology for wireless environments with multiple simultaneous transmissions because of several features: asynchronous multiple access, robustness to frequency selective fading, and multipath combining. The capacity
Blind equalization and multiuser detection in dispersive CDMA channels
 IEEE Trans. Commun
, 1998
"... ..."