Results 1 -
2 of
2
Automatically Recognizing Facial Expression: Predicting Engagement and Frustration
"... Learning involves a rich array of cognitive and affective states. Recognizing and understanding these cognitive and affective dimensions of learning is key to designing informed interventions. Prior research has highlighted the importance of facial expressions in learning-centered affective states, ..."
Abstract
-
Cited by 10 (4 self)
- Add to MetaCart
(Show Context)
Learning involves a rich array of cognitive and affective states. Recognizing and understanding these cognitive and affective dimensions of learning is key to designing informed interventions. Prior research has highlighted the importance of facial expressions in learning-centered affective states, but tracking facial expression poses significant challenges. This paper presents an automated analysis of fine-grained facial movements that occur during computer-mediated tutoring. We use the Computer Expression Recognition Toolbox (CERT) to track fine-grained facial movements consisting of eyebrow raising (inner and outer), brow lowering, eyelid tightening, and mouth dimpling within a naturalistic video corpus of tutorial dialogue (N=65). Within the dataset, upper face movements were found to be predictive of engagement, frustration, and learning, while mouth dimpling was a positive predictor of learning and self-reported performance. These results highlight how both intensity and frequency of facial expressions predict tutoring outcomes. Additionally, this paper presents a novel validation of an automated tracking tool on a naturalistic tutoring dataset, comparing CERT results with manual annotations across a prior video corpus. With the advent of readily available fine-grained facial expression recognition, the developments introduced here represent a next step toward automatically understanding moment-by-moment affective states during learning.
2013a) ‘Automatically recognizing facial indicators of frustration: a learning-centric analysis
- in Proceedings of the International Conference on Affective Computing and Intelligent Interaction
"... Abstract—Affective and cognitive processes form a rich substrate on which learning plays out. Affective states often influence progress on learning tasks, resulting in positive or negative cycles of affect that impact learning outcomes. Developing a detailed account of the occurrence and timing of c ..."
Abstract
-
Cited by 5 (4 self)
- Add to MetaCart
(Show Context)
Abstract—Affective and cognitive processes form a rich substrate on which learning plays out. Affective states often influence progress on learning tasks, resulting in positive or negative cycles of affect that impact learning outcomes. Developing a detailed account of the occurrence and timing of cognitive-affective states during learning can inform the design of affective tutorial interventions. In order to advance understanding of learning-centered affect, this paper reports on a study to analyze a video corpus of computer-mediated human tutoring using an automated facial expression recognition tool that detects fine-grained facial movements. The results reveal three significant relationships between facial expression, frustration, and learning: 1) Action Unit 2 (outer brow raise) was negatively correlated with learning gain, 2) Action Unit 4 (brow lowering) was positively correlated with frustration, and 3) Action Unit 14 (mouth dimpling) was positively correlated with both frustration and learning gain. Additionally, early prediction models demonstrated that facial actions during the first five minutes were significantly predictive of frustration and learning at the end of the tutoring session. The results represent a step toward a deeper understanding of learning-centered affective states, which will form the foundation for data-driven design of affective tutoring systems. Keywords—affect; frustration; learning; computer-mediated tutoring; facial expression recognition; facial action units; intensity I.