Results 1  10
of
65
A theory of defeasible reasoning
, 1991
"... Reasoning can lead not only to the adoption of beliefs, but also to the retraction of beliefs. In philosophy, this is described by saying that reasoning is defeasible. My ultimate objective is the construction of a general theory of reasoning and its implementation in an automated reasoner capable o ..."
Abstract

Cited by 283 (7 self)
 Add to MetaCart
Reasoning can lead not only to the adoption of beliefs, but also to the retraction of beliefs. In philosophy, this is described by saying that reasoning is defeasible. My ultimate objective is the construction of a general theory of reasoning and its implementation in an automated reasoner capable of both deductive and defeasible reasoning. The resulting system is named “OSCAR. ” This article addresses some of the theoretical underpinnings of OSCAR. This article extends my earlier theory in two directions. First, it addresses the question of what the criteria of adequacy should be for a defeasible reasoner. Second, it extends the theory to accommodate reasons of varying strengths.
Managing Uncertainty and Vagueness in Description Logics for the Semantic Web
, 2007
"... Ontologies play a crucial role in the development of the Semantic Web as a means for defining shared terms in web resources. They are formulated in web ontology languages, which are based on expressive description logics. Significant research efforts in the semantic web community are recently direct ..."
Abstract

Cited by 132 (10 self)
 Add to MetaCart
Ontologies play a crucial role in the development of the Semantic Web as a means for defining shared terms in web resources. They are formulated in web ontology languages, which are based on expressive description logics. Significant research efforts in the semantic web community are recently directed towards representing and reasoning with uncertainty and vagueness in ontologies for the Semantic Web. In this paper, we give an overview of approaches in this context to managing probabilistic uncertainty, possibilistic uncertainty, and vagueness in expressive description logics for the Semantic Web.
Process And Policy: ResourceBounded NonDemonstrative Reasoning
, 1993
"... This paper investigates the appropriateness of formal dialectics as a basis for nonmonotonic reasoning and defeasible reasoning that takes computational limits seriously. Rules that can come into conflict should be regarded as policies, which are inputs to deliberative processes. Dialectical protoc ..."
Abstract

Cited by 96 (4 self)
 Add to MetaCart
This paper investigates the appropriateness of formal dialectics as a basis for nonmonotonic reasoning and defeasible reasoning that takes computational limits seriously. Rules that can come into conflict should be regarded as policies, which are inputs to deliberative processes. Dialectical protocols are appropriate for such deliberations when resources are bounded and search is serial. AI, it is claimed here, is now perfectly positioned to correct many misconceptions about reasoning that have resulted from mathematical logic's enormous success in this century: among them, (1) that all reasons are demonstrative, (2) that rational belief is constrained, not constructed, (3) that process and disputation are not essential to reasoning. AI mainly provides new impetus to formalize the alternative (but older) conception of reasoning, and AI provides mechanisms with which to create compelling formalism that describes the control of processes. The technical contributions here are: the partial justification of dialectic based on controlling search; the observation that nonmonotonic reasoning can be subsumed under certain kinds of dialectics; the portrayal of inference in knowledge bases as policy reasoning; the review of logics of dialogue and proposed extensions; and the preformal and initial formal discussion of aspects and variations of dialectical systems with nondemonstrative reasons. 1. ARGUMENTS AND DEMONSTRATION
Statistical Foundations for Default Reasoning
, 1993
"... We describe a new approach to default reasoning, based on a principle of indifference among possible worlds. We interpret default rules as extreme statistical statements, thus obtaining a knowledge base KB comprised of statistical and firstorder statements. We then assign equal probability to all w ..."
Abstract

Cited by 48 (8 self)
 Add to MetaCart
We describe a new approach to default reasoning, based on a principle of indifference among possible worlds. We interpret default rules as extreme statistical statements, thus obtaining a knowledge base KB comprised of statistical and firstorder statements. We then assign equal probability to all worlds consistent with KB in order to assign a degree of belief to a statement '. The degree of belief can be used to decide whether to defeasibly conclude '. Various natural patterns of reasoning, such as a preference for more specific defaults, indifference to irrelevant information, and the ability to combine independent pieces of evidence, turn out to follow naturally from this technique. Furthermore, our approach is not restricted to default reasoning; it supports a spectrum of reasoning, from quantitative to qualitative. It is also related to other systems for default reasoning. In particular, we show that the work of [ Goldszmidt et al., 1990 ] , which applies maximum entropy ideas t...
From Statistics to Beliefs
, 1992
"... An intelligent agent uses known facts, including statistical knowledge, to assign degrees of belief to assertions it is uncertain about. We investigate three principled techniques for doing this. All three are applications of the principle of indifference, because they assign equal degree of belief ..."
Abstract

Cited by 48 (12 self)
 Add to MetaCart
An intelligent agent uses known facts, including statistical knowledge, to assign degrees of belief to assertions it is uncertain about. We investigate three principled techniques for doing this. All three are applications of the principle of indifference, because they assign equal degree of belief to all basic "situations " consistent with the knowledge base. They differ because there are competing intuitions about what the basic situations are. Various natural patterns of reasoning, such as the preference for the most specific statistical data available, turn out to follow from some or all of the techniques. This is an improvement over earlier theories, such as work on direct inference and reference classes, which arbitrarily postulate these patterns without offering any deeper explanations or guarantees of consistency. The three methods we investigate have surprising characterizations: there are connections to the principle of maximum entropy, a principle of maximal independence, an...
Defeasible reasoning with variable degrees of justification
 Artificial Intelligence
, 2002
"... The question addressed in this paper is how the degree of justification of a belief is determined. A conclusion may be supported by several different arguments, the arguments typically being defeasible, and there may also be arguments of varying strengths for defeaters for some of the supporting arg ..."
Abstract

Cited by 46 (3 self)
 Add to MetaCart
(Show Context)
The question addressed in this paper is how the degree of justification of a belief is determined. A conclusion may be supported by several different arguments, the arguments typically being defeasible, and there may also be arguments of varying strengths for defeaters for some of the supporting arguments. What is sought is a way of computing the “on sum ” degree of justification of a conclusion in terms of the degrees of justification of all relevant premises and the strengths of all relevant reasons. I have in the past defended various principles pertaining to this problem. In this paper I reaffirm some of those principles but propose a significantly different final analysis. Specifically, I endorse the weakest link principle for the computation of argument strengths. According to this principle the degree of justification an argument confers on its conclusion in the absence of other relevant arguments is the minimum of the degrees of justification of its premises and the strengths of the reasons employed in the argument. I reaffirm my earlier rejection of the accrual of reasons, according to which two arguments for a conclusion can result in a higher degree of justification than either argument by itself. This paper diverges from my earlier theory mainly in its treatment of defeaters.
Probabilistic Default Reasoning with Conditional Constraints
 ANN. MATH. ARTIF. INTELL
, 2000
"... We present an approach to reasoning from statistical and subjective knowledge, which is based on a combination of probabilistic reasoning from conditional constraints with approaches to default reasoning from conditional knowledge bases. More precisely, we introduce the notions of , lexicographic, ..."
Abstract

Cited by 38 (18 self)
 Add to MetaCart
(Show Context)
We present an approach to reasoning from statistical and subjective knowledge, which is based on a combination of probabilistic reasoning from conditional constraints with approaches to default reasoning from conditional knowledge bases. More precisely, we introduce the notions of , lexicographic, and conditional entailment for conditional constraints, which are probabilistic generalizations of Pearl's entailment in system , Lehmann's lexicographic entailment, and Geffner's conditional entailment, respectively. We show that the new formalisms have nice properties. In particular, they show a similar behavior as referenceclass reasoning in a number of uncontroversial examples. The new formalisms, however, also avoid many drawbacks of referenceclass reasoning. More precisely, they can handle complex scenarios and even purely probabilistic subjective knowledge as input. Moreover, conclusions are drawn in a global way from all the available knowledge as a whole. We then show that the new formalisms also have nice general nonmonotonic properties. In detail, the new notions of , lexicographic, and conditional entailment have similar properties as their classical counterparts. In particular, they all satisfy the rationality postulates proposed by Kraus, Lehmann, and Magidor, and they have some general irrelevance and direct inference properties. Moreover, the new notions of  and lexicographic entailment satisfy the property of rational monotonicity. Furthermore, the new notions of , lexicographic, and conditional entailment are proper generalizations of both their classical counterparts and the classical notion of logical entailment for conditional constraints. Finally, we provide algorithms for reasoning under the new formalisms, and we analyze its computational com...
Belief change as propositional update
 Cognitive Science
, 1997
"... Publication details, including instructions for authors and subscription information: ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
(Show Context)
Publication details, including instructions for authors and subscription information:
Weak nonmonotonic probabilistic logics
, 2004
"... Towards probabilistic formalisms for resolving local inconsistencies under modeltheoretic probabilistic entailment, we present probabilistic generalizations of Pearl’s entailment in System Z and Lehmann’s lexicographic entailment. We then analyze the nonmonotonic and semantic properties of the new ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
(Show Context)
Towards probabilistic formalisms for resolving local inconsistencies under modeltheoretic probabilistic entailment, we present probabilistic generalizations of Pearl’s entailment in System Z and Lehmann’s lexicographic entailment. We then analyze the nonmonotonic and semantic properties of the new notions of entailment. In particular, we show that they satisfy the rationality postulates of System P and the property of Rational Monotonicity. Moreover, we show that modeltheoretic probabilistic entailment is stronger than the new notion of lexicographic entailment, which in turn is stronger than the new notion of entailment in System Z. As an important feature of the new notions of entailment in System Z and lexicographic entailment, we show that they coincide with modeltheoretic probabilistic entailment whenever there are no local inconsistencies. We also show that the new notions of entailment in System Z and lexicographic entailment are proper generalizations of their classical counterparts. Finally, we present algorithms for reasoning under the new formalisms, and we give a precise picture of its computational complexity.
Combining probabilistic logic programming with the power of maximum entropy
 ARTIF. INTELL
, 2004
"... This paper is on the combination of two powerful approaches to uncertain reasoning: logic programming in a probabilistic setting, on the one hand, and the informationtheoretical principle of maximum entropy, on the other hand. More precisely, we present two approaches to probabilistic logic progra ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
This paper is on the combination of two powerful approaches to uncertain reasoning: logic programming in a probabilistic setting, on the one hand, and the informationtheoretical principle of maximum entropy, on the other hand. More precisely, we present two approaches to probabilistic logic programming under maximum entropy. The first one is based on the usual notion of entailment under maximum entropy, and is defined for the very general case of probabilistic logic programs over Boolean events. The second one is based on a new notion of entailment under maximum entropy, where the principle of maximum entropy is coupled with the closed world assumption (CWA) from classical logic programming. It is only defined for the more restricted case of probabilistic logic programs over conjunctive events. We then analyze the nonmonotonic behavior of both approaches along benchmark examples and along general properties for default reasoning from conditional knowledge bases. It turns out that both approaches have very nice nonmonotonic features. In particular, they realize some inheritance of probabilistic knowledge along subclass relationships, without suffering from the problem of inheritance blocking and from the drowning problem. They both also satisfy the property of rational monotonicity and several irrelevance properties. We finally present algorithms for both approaches, which are based on generalizations of techniques from probabilistic