Results 11  20
of
59
Computing ManytoMany Shortest Paths Using Highway Hierarchies
, 2007
"... We present a fast algorithm for computing all shortest paths between source nodes s ∈ S and target nodes t ∈ T. This problem is important as an initial step for many operations research problems (e.g., the vehicle routing problem), which require the distances between S and T as input. Our approach i ..."
Abstract

Cited by 26 (5 self)
 Add to MetaCart
We present a fast algorithm for computing all shortest paths between source nodes s ∈ S and target nodes t ∈ T. This problem is important as an initial step for many operations research problems (e.g., the vehicle routing problem), which require the distances between S and T as input. Our approach is based on highway hierarchies, which are also used for the currently fastest speedup techniques for shortest path queries in road networks. We show how to use highway hierarchies so that for example, a 10 000 × 10 000 distance table in the European road network can be computed in about one minute. These results are based on a simple basic idea, several refinements, and careful engineering of the approach. We also explain how the approach can be parallelized and how the computation can be restricted to computing only the k closest connections.
Path Oracles for Spatial Networks
, 2009
"... The advent of locationbased services has led to an increased demand for performing operations on spatial networks in real time. The challenge lies in being able to cast operations on spatial networks in terms of relational operators so that they can be performed in the context of a database. A line ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
(Show Context)
The advent of locationbased services has led to an increased demand for performing operations on spatial networks in real time. The challenge lies in being able to cast operations on spatial networks in terms of relational operators so that they can be performed in the context of a database. A linearsized construct termed a path oracle is introduced that compactly encodes the n2 shortest paths between every pair of vertices in a spatial network having n vertices thereby reducing each of the paths to a single tuple in a relational database and enables finding shortest paths by repeated application of a single SQL SELECT operator. The construction of the path oracle is based on the observed coherence between the spatial positions of both source and destination vertices and the shortest paths between them which facilitates the aggregation of source and destination vertices into groups that share common vertices or edges on the shortest paths between them. With the aid of the WellSeparated Pair (WSP) technique, which has been applied to spatial networks using the network distance measure, a path oracle is proposed that takes O(sdn) space, where s is empirically estimated to be around 12 for road networks, but that can retrieve an intermediate link in a shortest path in O(logn) time using a Btree. An additional construct termed the pathdistance oracle of size O(n · max(sd, 1 d ε)) (empirically (n · max(122, 2.5 2 ε))) is proposed that can retrieve an intermediate vertex as well as an εapproximation of the network distances in O(logn) time using a Btree. Experimental results indicate that the proposed oracles are linear in n which means that they are scalable and can enable complicated query processing scenarios on massive spatial network datasets.
Highway hierarchies star
 9TH DIMACS IMPLEMENTATION CHALLENGE
, 2006
"... We study two speedup techniques for route planning in road networks: highway hierarchies (HH) and goal directed search using landmarks (ALT). It turns out that there are several interesting synergies. Highway hierarchies yield a way to implement landmark selection more efficiently and to store landm ..."
Abstract

Cited by 25 (12 self)
 Add to MetaCart
We study two speedup techniques for route planning in road networks: highway hierarchies (HH) and goal directed search using landmarks (ALT). It turns out that there are several interesting synergies. Highway hierarchies yield a way to implement landmark selection more efficiently and to store landmark information more space efficiently than before. ALT gives queries in highway hierarchies an excellent sense of direction and allows some pruning of the search space. For computing shortest distances and approximately shortest travel times, this combination yields a significant speedup over HH alone. We also explain how to compute actual shortest paths very efficiently.
Reach for A∗: Shortest Path Algorithms with Preprocessing
 DIMACS SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
, 2009
"... We study the pointtopoint shortest path problem with preprocessing. Given an input graph, we preprocess it so as to be able to answer a series of sourcetodestination queries efficiently. Our work is motivated by an algorithm of Gutman [ALENEX’04], based on the notion of reach, which measures ho ..."
Abstract

Cited by 21 (12 self)
 Add to MetaCart
We study the pointtopoint shortest path problem with preprocessing. Given an input graph, we preprocess it so as to be able to answer a series of sourcetodestination queries efficiently. Our work is motivated by an algorithm of Gutman [ALENEX’04], based on the notion of reach, which measures how important each vertex is with respect to shortest paths. We present a simplified version of his algorithm that does not require explicit lower bounds during queries. We also show how the addition of shortcuts to the graph greatly improves the performance of both preprocessing and queries. Finally, we combine a reachbased algorithm with landmarkbased A∗ search to obtain a wide range of spacetime tradeoffs. For our motivating application, driving directions for road networks, the resulting algorithm is very efficient and practical. The road networks of the USA and Western Europe have roughly 20 million vertices, but on average our algorithm must visit fewer than a thousand to find the distance between two points. Our algorithm also works reasonably well on 2dimensional grid graphs with random arc weights.
SpeedUp Techniques for ShortestPath Computations
 IN PROCEEDINGS OF THE 24TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS’07
, 2007
"... During the last years, several speedup techniques for Dijkstra’s algorithm have been published that maintain the correctness of the algorithm but reduce its running time for typical instances. They are usually based on a preprocessing that annotates the graph with additional information which can ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
(Show Context)
During the last years, several speedup techniques for Dijkstra’s algorithm have been published that maintain the correctness of the algorithm but reduce its running time for typical instances. They are usually based on a preprocessing that annotates the graph with additional information which can be used to prune or guide the search. Timetable information in public transport is a traditional application domain for such techniques. In this paper, we provide a condensed overview of new developments and extensions of classic results. Furthermore, we discuss how combinations of speedup techniques can be realized to take advantage from different strategies.
Geometric Containers for Efficient ShortestPath Computation
 ACM JOURNAL OF EXPERIMENTAL ALGORITHMICS
, 2005
"... A fundamental approach in finding efficiently best routes or optimal itineraries in traffic information systems is to reduce the search space (part of graph visited) of the most commonly used shortest path routine (Dijkstra’s algorithm) on a suitably defined graph. We investigate reduction of the se ..."
Abstract

Cited by 20 (8 self)
 Add to MetaCart
(Show Context)
A fundamental approach in finding efficiently best routes or optimal itineraries in traffic information systems is to reduce the search space (part of graph visited) of the most commonly used shortest path routine (Dijkstra’s algorithm) on a suitably defined graph. We investigate reduction of the search space while simultaneously retaining data structures, created during a preprocessing phase, of size linear (i.e., optimal) to the size of the graph. We show that the search space of Dijkstra’s algorithm can be significantly reduced by extracting geometric information from a given layout of the graph and by encapsulating precomputed shortestpath information in resulted geometric objects (containers). We present an extensive experimental study comparing the impact of different types of geometric containers using test data from realworld traffic networks. We also present new algorithms as well as an empirical study for the dynamic case of this problem, where edge weights are subject to change and the geometric containers have to be updated and show that our new methods are two to three times faster than recomputing everything from scratch. Finally, in an appendix, we discuss the software framework that we developed to realize the implementations of all of our variants of Dijkstra’s algorithm. Such a framework is not trivial to achieve as our goal was to maintain a common code base that is, at the same time, small, efficient, and flexible,
Better landmarks within reach
 IN THE 9TH DIMACS IMPLEMENTATION CHALLENGE: SHORTEST PATHS
, 2007
"... We present significant improvements to a practical algorithm for the pointtopoint shortest path problem on road networks that combines A∗ search, landmarkbased lower bounds, and reachbased pruning. Through reachaware landmarks, better use of cache, and improved algorithms for reach computation ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
We present significant improvements to a practical algorithm for the pointtopoint shortest path problem on road networks that combines A∗ search, landmarkbased lower bounds, and reachbased pruning. Through reachaware landmarks, better use of cache, and improved algorithms for reach computation, we make preprocessing and queries faster while reducing the overall space requirements. On the road networks of the USA or Europe, the shortest path between two random vertices can be found in about one millisecond after one or two hours of preprocessing. The algorithm is also effective on twodimensional grids.
Goal directed shortest path queries using Precomputed Cluster Distances
 IN 5TH WORKSHOP ON EXPERIMENTAL ALGORITHMS (WEA), NUMBER 4007 IN LNCS
, 2006
"... We demonstrate how Dijkstra’s algorithm for shortest path queries can be accelerated by using precomputed shortest path distances. Our approach allows a completely flexible tradeoff between query time and space consumption for precomputed distances. In particular, sublinear space is sufficient to g ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
We demonstrate how Dijkstra’s algorithm for shortest path queries can be accelerated by using precomputed shortest path distances. Our approach allows a completely flexible tradeoff between query time and space consumption for precomputed distances. In particular, sublinear space is sufficient to give the search a strong “sense of direction”. We evaluate our approach experimentally using large, realworld road networks.
In Transit to Constant Time ShortestPath Queries in Road Networks
"... When you drive to somewhere ‘far away’, you will leave your current location via one of only a few ‘important’ traffic junctions. Starting from this informal observation, we develop an algorithmic approach—transit node routing— that allows us to reduce quickestpath queries in road networks to a sma ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
When you drive to somewhere ‘far away’, you will leave your current location via one of only a few ‘important’ traffic junctions. Starting from this informal observation, we develop an algorithmic approach—transit node routing— that allows us to reduce quickestpath queries in road networks to a small number of table lookups. We present two implementations of this idea, one based on a simple grid data structure and one based on highway hierarchies. For the road map of the United States, our best query times improve over the best previously published figures by two orders of magnitude. Our results exhibit various tradeoffs between average query time (6 µs to 63 µs), preprocessing time (62 min to 1200 min), and storage overhead (27 bytes/node to 247 bytes/node).
Engineering the labelconstrained shortestpath algorithm
, 2007
"... Abstract. We consider a generalization of the shortestpath problem: given an alphabet Σ, a graph G whose edges are weighted and Σlabeled, and a regular language L ⊆ Σ∗, the Lconstrained shortestpath problem consists of finding a shortest path p in G such that the concatenated labels along p form ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We consider a generalization of the shortestpath problem: given an alphabet Σ, a graph G whose edges are weighted and Σlabeled, and a regular language L ⊆ Σ∗, the Lconstrained shortestpath problem consists of finding a shortest path p in G such that the concatenated labels along p form a word of L. This definition allows to model, e. g., many trafficplanning problems. We present extensions of wellknown speedup techniques for the standard shortestpath problem, and conduct an extensive experimental study of their performance with various networks and language constraints. Our results show that depending on the network type, both goaldirected and bidirectional search speed up the search considerably, while combinations of these do not. 1