Results 1  10
of
43
Geometric Shortest Paths and Network Optimization
 Handbook of Computational Geometry
, 1998
"... Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to be the sum of the weights of t ..."
Abstract

Cited by 147 (12 self)
 Add to MetaCart
Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to be the sum of the weights of the edges that comprise it. Efficient algorithms are well known for this problem, as briefly summarized below. The shortest path problem takes on a new dimension when considered in a geometric domain. In contrast to graphs, where the encoding of edges is explicit, a geometric instance of a shortest path problem is usually specified by giving geometric objects that implicitly encode the graph and its edge weights. Our goal in devising efficient geometric algorithms is generally to avoid explicit construction of the entire underlying graph, since the full induced graph may be very large (even exponential in the input size, or infinite). Computing an optimal
Geometric SpeedUp Techniques for Finding Shortest Paths in Large Sparse Graphs
, 2003
"... In this paper, we consider Dijkstra's algorithm for the single source single target shortest paths problem in large sparse graphs. The goal is to reduce the response time for online queries by using precomputed information. For the result of the preprocessing, we admit at most linear space. We as ..."
Abstract

Cited by 53 (14 self)
 Add to MetaCart
In this paper, we consider Dijkstra's algorithm for the single source single target shortest paths problem in large sparse graphs. The goal is to reduce the response time for online queries by using precomputed information. For the result of the preprocessing, we admit at most linear space. We assume that a layout of the graph is given. From this layout, in the preprocessing, we determine for each edge a geometric object containing all nodes that can be reached on a shortest path starting with that edge. Based on these geometric objects, the search space for online computation can be reduced significantly. We present an extensive experimental study comparing the impact of different types of objects. The test data we use are traffic networks, the typical field of application for this scenario.
All Pairs Shortest Paths in Undirected Graphs with Integer Weights
 In IEEE Symposium on Foundations of Computer Science
, 1999
"... We show that the All Pairs Shortest Paths (APSP) problem for undirected graphs with integer edge weights taken from the range f1; 2; : : : ; Mg can be solved using only a logarithmic number of distance products of matrices with elements in the range f1; 2; : : : ; Mg. As a result, we get an algorith ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
We show that the All Pairs Shortest Paths (APSP) problem for undirected graphs with integer edge weights taken from the range f1; 2; : : : ; Mg can be solved using only a logarithmic number of distance products of matrices with elements in the range f1; 2; : : : ; Mg. As a result, we get an algorithm for the APSP problem in such graphs that runs in ~ O(Mn ! ) time, where n is the number of vertices in the input graph, M is the largest edge weight in the graph, and ! ! 2:376 is the exponent of matrix multiplication. This improves, and also simplifies, an ~ O(M (!+1)=2 n ! ) time algorithm of Galil and Margalit. 1. Introduction The All Pairs Shortest Paths (APSP) problem is one of the most fundamental algorithmic graph problems. The APSP problem for directed or undirected graphs with real weights can be solved using classical methods, in O(mn + n 2 log n) time (Dijkstra [4], Johnson [10], Fredman and Tarjan [7]), or in O(n 3 ((log log n)= log n) 1=2 ) time (Fredman [6], ...
Approximate shortest path on a polyhedral surface and its applications
 ComputerAided Design
, 2000
"... A new algorithm is proposed for calculating the approximate shortest path on a polyhedral surface. The method mainly uses Dijkstra’s algorithm and is based on selective refinement of the discrete graph of a polyhedron. Although the algorithm is an approximation, it has the significant advantages of ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
A new algorithm is proposed for calculating the approximate shortest path on a polyhedral surface. The method mainly uses Dijkstra’s algorithm and is based on selective refinement of the discrete graph of a polyhedron. Although the algorithm is an approximation, it has the significant advantages of being fast, easy to implement, high approximation accuracy, and numerically robust. The approximation accuracy and computation time are compared between this approximation algorithm and the extended Chen & Han (ECH) algorithm that can calculate the exact shortest path for nonconvex polyhedra. The approximation algorithm can calculate shortest paths within 0.4 % accuracy to roughly 1001000 times faster than the ECH algorithm in our examples. Two applications are discussed of the approximation algorithm to geometric modeling.
Integer Priority Queues with Decrease Key in . . .
 STOC'03
, 2003
"... We consider Fibonacci heap style integer priority queues supporting insert and decrease key operations in constant time. We present a deterministic linear space solution that with n integer keys support delete in O(log log n) time. If the integers are in the range [0,N), we can also support delete i ..."
Abstract

Cited by 27 (2 self)
 Add to MetaCart
We consider Fibonacci heap style integer priority queues supporting insert and decrease key operations in constant time. We present a deterministic linear space solution that with n integer keys support delete in O(log log n) time. If the integers are in the range [0,N), we can also support delete in O(log log N) time. Even for the special case of monotone priority queues, where the minimum has to be nondecreasing, the best previous bounds on delete were O((log n) 1/(3−ε) ) and O((log N) 1/(4−ε)). These previous bounds used both randomization and amortization. Our new bounds a deterministic, worstcase, with no restriction to monotonicity, and exponentially faster. As a classical application, for a directed graph with n nodes and m edges with nonnegative integer weights, we get single source shortest paths in O(m + n log log n) time, or O(m + n log log C) ifC is the maximal edge weight. The later solves an open problem of Ahuja, Mehlhorn, Orlin, and
A Parallelization of Dijkstra's Shortest Path Algorithm
 IN PROC. 23RD MFCS'98, LECTURE NOTES IN COMPUTER SCIENCE
, 1998
"... The single source shortest path (SSSP) problem lacks parallel solutions which are fast and simultaneously workefficient. We propose simple criteria which divide Dijkstra's sequential SSSP algorithm into a number of phases, such that the operations within a phase can be done in parallel. We give a P ..."
Abstract

Cited by 26 (6 self)
 Add to MetaCart
The single source shortest path (SSSP) problem lacks parallel solutions which are fast and simultaneously workefficient. We propose simple criteria which divide Dijkstra's sequential SSSP algorithm into a number of phases, such that the operations within a phase can be done in parallel. We give a PRAM algorithm based on these criteria and analyze its performance on random digraphs with random edge weights uniformly distributed in [0, 1]. We use
Geodesic matting: A framework for fast interactive image and video segmentation and matting
 IJCV
, 2009
"... An interactive framework for soft segmentation and matting of natural images and videos is presented in this paper. The proposed technique is based on the optimal, linear time, computation of weighted geodesic distances to userprovided scribbles, from which the whole data is automatically segmented ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
An interactive framework for soft segmentation and matting of natural images and videos is presented in this paper. The proposed technique is based on the optimal, linear time, computation of weighted geodesic distances to userprovided scribbles, from which the whole data is automatically segmented. The weights are based on spatial and/or temporal gradients, considering the statistics of the pixels scribbled by the user, without explicit optical flow or any advanced and often computationally expensive feature detectors. These could be naturally added to the proposed framework as well if desired, in the form of weights in the geodesic distances. An automatic localized refinement step follows this fast segmentation in order to further improve the results and accurately compute the corresponding matte function. Additional constraints into the distance definition permit to efficiently handle occlusions such as people or objects crossing each other in a video sequence. The presentation of the framework is complemented with numerous and diverse examples, including extraction of moving foreground from dynamic background in video, natural and 3D medical images, and comparisons with the recent literature.
Floats, Integers, and Single Source Shortest Paths
 Journal of Algorithms
, 2000
"... Floats are ugly, but to everyone but theoretical computer scientists, they are the real thing. A linear time algorithm is presented for the undirected single source shortest paths problem with positive floating point weights. 1 Introduction The technical goal of this paper is to present a linear ti ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
Floats are ugly, but to everyone but theoretical computer scientists, they are the real thing. A linear time algorithm is presented for the undirected single source shortest paths problem with positive floating point weights. 1 Introduction The technical goal of this paper is to present a linear time solution to the undirected single source shortest paths problem (USSSP) where the weights are positive floating points, or just floats. On a more philosophical level, the goal is to draw attention to the problem of making efficient algorithms for floats. Suppose, for example, we have an algorithm for the maxflow problem whose running time includes a factor log C, where C is the maximal capacity. If we allow floating points, such an algorithm is not even polynomial, i.e. log C is the exponent of C, and the exponent is stored with log log C bits. Floating points are at least as used as integers, by everybody but theoretical computer scientists, who seem to prefer integers. To multiply two...
Computing Shortest Paths with Comparisons and Additions
 SODA
, 2002
"... We present an undirected allpairs shortest paths (APSP) algorithm which runs on a pointer machine in time O(mnot(m, n)) while making O(ran log a(m, n)) comparisons and additions, where m and n are the number of edges and vertices, respectively, and a(ra, n) is Tarjan's inverseAckermann function. ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
We present an undirected allpairs shortest paths (APSP) algorithm which runs on a pointer machine in time O(mnot(m, n)) while making O(ran log a(m, n)) comparisons and additions, where m and n are the number of edges and vertices, respectively, and a(ra, n) is Tarjan's inverseAckermann function. This improves upon all previous comparison & additionbased APSP algorithms when the graph is sparse, i.e., when m = o(n log n). At the heart of our APSP algorithm is a new singlesource shortest paths algorithm which runs in time O(ma(m,n) + nloglogr) on a pointer machine, where r is the ratio of the maximumtominimum edge length. So long as r < 2 '~°(a) this algorithm is faster than any implementation of Dijkstra's classical algorithm in the comparisonaddition model. For directed graphs we give an O(ra + nlogr)time comparison & additionbased SSSP algorithm on a pointer machine. Similar algorithms assuming integer weights or the RAM model were given earlier.