Results 1 
5 of
5
Recursive coalgebras from comonads
 Inform. and Comput
, 2006
"... The concept of recursive coalgebra of a functor was introduced in the 1970s by Osius in his work on categorical set theory to discuss the relationship between wellfounded induction and recursively specified functions. In this paper, we motivate the use of recursive coalgebras as a paradigm of struct ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
(Show Context)
The concept of recursive coalgebra of a functor was introduced in the 1970s by Osius in his work on categorical set theory to discuss the relationship between wellfounded induction and recursively specified functions. In this paper, we motivate the use of recursive coalgebras as a paradigm of structured recursion in programming semantics, list some basic facts about recursive coalgebras and, centrally, give new conditions for the recursiveness of a coalgebra based on comonads, comonadcoalgebras and distributive laws of functors over comonads. We also present an alternative construction using countable products instead of cofree comonads.
Contents
"... Abstract. This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the categorytheoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: worki ..."
Abstract
 Add to MetaCart
Abstract. This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the categorytheoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: working only in categories with “enough final coalgebras ” we show how to formulate, solve, and study recursive program schemes. Our general theory is algebraic and so avoids using ordered, or metric structures. Our work generalizes the previous approaches which do use this extra structure by isolating the key concepts needed to study substitution in infinite trees, including secondorder substitution. As special cases of our interpreted solutions we obtain the usual denotational semantics using complete partial orders, and the one using complete metric spaces. Our theory also encompasses implicitly defined objects which are not usually taken to be related to recursive program schemes. For example, the classical Cantor twothirds set falls out as an interpreted
Abstract Information and Computation 204 (2006) 437–468 Recursive coalgebras from comonads �,��
, 2004
"... www.elsevier.com/locate/ic ..."
(Show Context)
www.elsevier.com/locate/entcs Iterative Algebras for a Base
"... For algebras A whose type is given by an endofunctor, iterativity means that every flat equation morphism in A has a unique solution. In our previous work we proved that every object generates a free iterative algebra, and we provided a coalgebraic construction of those free algebras. Iterativity w. ..."
Abstract
 Add to MetaCart
(Show Context)
For algebras A whose type is given by an endofunctor, iterativity means that every flat equation morphism in A has a unique solution. In our previous work we proved that every object generates a free iterative algebra, and we provided a coalgebraic construction of those free algebras. Iterativity w.r.t. an endofunctor was generalized by Tarmo Uustalu to iterativity w.r.t. a “base”, i.e., a functor of two variables yielding finitary monads in one variable. In the current paper we introduce iterative algebras in this general setting, and provide again a coalgebraic construction of free iterative algebras.