Results 1  10
of
49
Interpolation Theorems, Lower Bounds for Proof Systems, and Independence Results for Bounded Arithmetic
"... A proof of the (propositional) Craig interpolation theorem for cutfree sequent calculus yields that a sequent with a cutfree proof (or with a proof with cutformulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuitsize is at most k. We ..."
Abstract

Cited by 88 (2 self)
 Add to MetaCart
A proof of the (propositional) Craig interpolation theorem for cutfree sequent calculus yields that a sequent with a cutfree proof (or with a proof with cutformulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuitsize is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: 1. Feasible interpolation theorems for the following proof systems: (a) resolution. (b) a subsystem of LK corresponding to the bounded arithmetic theory S 2 2 (ff). (c) linear equational calculus. (d) cutting planes. 2. New proofs of the exponential lower bounds (for new formulas) (a) for resolution ([15]). (b) for the cutting planes proof system with coefficients written in unary ([4]). 3. An alternative proof of the independence result of [43] concerning the provability of circuitsize lower bounds ...
Some Consequences of Cryptographical Conjectures for . . .
, 1995
"... We show that there is a pair of disjoint NPsets, whose disjointness is provable in S 1 2 and which cannot be separated by a set in P=poly, if the cryptosystem RSA is secure. Further we show that factoring and the discrete logarithm are implicitly definable in any extension of S 1 2 admittin ..."
Abstract

Cited by 76 (8 self)
 Add to MetaCart
We show that there is a pair of disjoint NPsets, whose disjointness is provable in S 1 2 and which cannot be separated by a set in P=poly, if the cryptosystem RSA is secure. Further we show that factoring and the discrete logarithm are implicitly definable in any extension of S 1 2 admitting an NP definition of primes about which it can prove that no number satisfying the definition is composite. As a corollary we obtain that the Extended Frege (EF) proof system does not admit feasible interpolation theorem unless the RSA cryptosystem is not secure, and that an extension of EF by tautologies p (p primes), formalizing that p is not composite, as additional axioms does not admit feasible interpolation theorem unless factoring and the discrete logarithm are in P=poly . The NP 6= coNP conjecture is equivalent to the statement that no propositional proof system (as defined in [6]) admits polynomial size proofs of all tautologies. However, only for few proof systems occur...
Polynomial size proofs of the propositional pigeonhole principle
 Journal of Symbolic Logic
, 1987
"... Abstract. Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege systems ha ..."
Abstract

Cited by 72 (7 self)
 Add to MetaCart
Abstract. Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege systems have an exponential speedup over resolution. We also discuss connections to provability in theories of bounded arithmetic. $1. Introduction. The motivation for this paper comes primarily from two sources. First, Cook and Reckhow [2] and Statman [7] discussed connections between lengths of proofs in propositional logic and open questions in computational complexity such as whether NP = coNP. Cook and Reckhow used the propositional pigeonhole principle as an example of a family of true formulae which
On the Weak Pigeonhole Principle
, 2001
"... We investigate the proof complexity, in (extensions of) resolution and in bounded arithmetic, of the weak pigeonhole principle and of Ramsey theorem. In particular, we link the proof complexity of these two principles. Further we give lower bounds to the width of resolution proofs and to the size of ..."
Abstract

Cited by 70 (3 self)
 Add to MetaCart
We investigate the proof complexity, in (extensions of) resolution and in bounded arithmetic, of the weak pigeonhole principle and of Ramsey theorem. In particular, we link the proof complexity of these two principles. Further we give lower bounds to the width of resolution proofs and to the size of (extensions of) treelike resolution proofs of Ramsey theorem. We establish a connection between provability of WPHP in fragments of bounded arithmetic and cryptographic assumptions (the existence of oneway functions). In particular, we show that functions violating WPHP 2n n are oneway and, on the other hand, that oneway permutations give rise to functions violating PHP n+1 n , and that strongly collisionfree families of hash functions give rise to functions violating WPHP 2n n (all in suitable models of bounded arithmetic). Further we formulate few problems and conjectures; in particular, on the structured PHP (introduced here) and on the unrelativised WPHP. The symbol WPHP m n...
An Exponential Lower Bound to the Size of Bounded Depth Frege . . .
, 1994
"... We prove lower bounds of the form exp (n ffl d ) ; ffl d ? 0; on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d; for any constant d: This is the largest lower bound for the strongest proof system, for whic ..."
Abstract

Cited by 68 (10 self)
 Add to MetaCart
We prove lower bounds of the form exp (n ffl d ) ; ffl d ? 0; on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d; for any constant d: This is the largest lower bound for the strongest proof system, for which any superpolynomial lower bounds are known.
Lower bounds on Hilbert's Nullstellensatz and propositional proofs
 PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY
, 1996
"... The socalled weak form of Hilbert's Nullstellensatz says that a system of algebraic equations over a field, Qj(x) = 0, does not have a solution in the algebraic closure if and only if 1 is in the ideal generated by the polynomials (?,(*) • We shall prove a lower bound on the degrees of polynomials ..."
Abstract

Cited by 63 (18 self)
 Add to MetaCart
The socalled weak form of Hilbert's Nullstellensatz says that a system of algebraic equations over a field, Qj(x) = 0, does not have a solution in the algebraic closure if and only if 1 is in the ideal generated by the polynomials (?,(*) • We shall prove a lower bound on the degrees of polynomials P,(x) such that £, P,(x)Qt(x) = 1. This result has the following application. The modular counting principle states that no finite set whose cardinality is not divisible by q can be partitioned into ^element classes. For each fixed cardinality N, this principle can be expressed as a propositional formula Count^fo,...) with underlying variables xe, where e ranges over <7element subsets of N. Ajtai [4] proved recently that, whenever p,q are two different primes, the propositional formulas Count $ n+I do not have polynomial size, constantdepth Frege proofs from substitution instances of Count/?, where m^O (modp). We give a new proof of this theorem based on the lower bound for Hilbert's Nullstellensatz. Furthermore our technique enables us to extend the independence results for counting principles to composite numbers p and q. This improved lower bound together with new upper bounds yield an exact characterization of when Count, can be proved efficiently from Countp, for all values of p and q.
Lower Bounds to the Size of ConstantDepth Propositional Proofs
, 1994
"... 1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp(O(log 2 n)) but such that every depth d refutation must have the size at least exp(n\Omega\Gamma21 ). The sets T d n express a weaker form of the pigeonhole principle. It is a fundamental problem of mathematical logic and complexity theory whether there exists a proof system for propositional logic in which every tautology has a short proof, where the length (equivalently the size) of a proof is measured essentially by the total number of symbols in it and short means polynomial in the length of the tautology. Equivalently one can ask whether for every theory T there is another theory S (both first order and reasonably axiomatized, e.g. by schemes) having the property that if a statement...
Resolution proofs of generalized pigeonhole principles
 Theoretical Computer Science
, 1988
"... We extend results of A. Haken to give an exponential lower bound on the size of resolution proofs for propositional formulas encoding a generalized pigeonhole principle. These propositional formulas express the fact that there is no oneone mapping from c · n objects to n objects when c>1. As a coro ..."
Abstract

Cited by 53 (4 self)
 Add to MetaCart
We extend results of A. Haken to give an exponential lower bound on the size of resolution proofs for propositional formulas encoding a generalized pigeonhole principle. These propositional formulas express the fact that there is no oneone mapping from c · n objects to n objects when c>1. As a corollary, resolution proof systems do not psimulate constant formula depth Frege proof systems. 1.
A New Proof of the Weak Pigeonhole Principle
, 2000
"... The exact complexity of the weak pigeonhole principle is an old and fundamental problem in proof complexity. Using a diagonalization argument, Paris, Wilkie and Woods [16] showed how to prove the weak pigeonhole principle with boundeddepth, quasipolynomialsize proofs. Their argument was further re ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
The exact complexity of the weak pigeonhole principle is an old and fundamental problem in proof complexity. Using a diagonalization argument, Paris, Wilkie and Woods [16] showed how to prove the weak pigeonhole principle with boundeddepth, quasipolynomialsize proofs. Their argument was further refined by Kraj'icek [9]. In this paper, we present a new proof: we show that the the weak pigeonhole principle has quasipolynomialsize LK proofs where every formula consists of a single AND/OR of polylog fanin. Our proof is conceptually simpler than previous arguments, and is optimal with respect to depth. 1 Introduction The pigeonhole principle is a fundamental axiom of mathematics, stating that there is no onetoone mapping from m pigeons to n holes when m ? n. It expresses Department of Mathematics and Computer Science, Clarkson University, Potsdam, NY 136995815, U.S.A. alexis@clarkson.edu. Research supported by NSF grant CCR9877150. y Department of Computer Science, University o...
On provably disjoint NPpairs
 ELECTRONIC COLLOQUIUM ON COMPUTATIONAL COMPLEXITY
, 1994
"... In this paper we study the pairs (U; V ) of disjoint NPsets representable in a theory T of Bounded Arithmetic in the sense that T proves U " V = ;. For a large variety of theories T we exhibit a natural disjoint NPpair which is complete for the class of disjoint NPpairs representable in T . Th ..."
Abstract

Cited by 44 (2 self)
 Add to MetaCart
In this paper we study the pairs (U; V ) of disjoint NPsets representable in a theory T of Bounded Arithmetic in the sense that T proves U " V = ;. For a large variety of theories T we exhibit a natural disjoint NPpair which is complete for the class of disjoint NPpairs representable in T . This allows us to clarify the approach to showing independence of central open questions in Boolean complexity from theories of Bounded Arithmetic initiated in [11]. Namely, in order to prove the independence result from a theory T , it is sufficient to separate the corresponding complete NPpair by a (quasi)polytime computable set. We remark that such a separation is obvious for the theory S(S 2 ) + S \Sigma 2 \Gamma PIND considered in [11], and this gives an alternative proof of the main result from that paper.