Results 1 
7 of
7
A New Proof of the Weak Pigeonhole Principle
, 2000
"... The exact complexity of the weak pigeonhole principle is an old and fundamental problem in proof complexity. Using a diagonalization argument, Paris, Wilkie and Woods [16] showed how to prove the weak pigeonhole principle with boundeddepth, quasipolynomialsize proofs. Their argument was further re ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
The exact complexity of the weak pigeonhole principle is an old and fundamental problem in proof complexity. Using a diagonalization argument, Paris, Wilkie and Woods [16] showed how to prove the weak pigeonhole principle with boundeddepth, quasipolynomialsize proofs. Their argument was further refined by Kraj'icek [9]. In this paper, we present a new proof: we show that the the weak pigeonhole principle has quasipolynomialsize LK proofs where every formula consists of a single AND/OR of polylog fanin. Our proof is conceptually simpler than previous arguments, and is optimal with respect to depth. 1 Introduction The pigeonhole principle is a fundamental axiom of mathematics, stating that there is no onetoone mapping from m pigeons to n holes when m ? n. It expresses Department of Mathematics and Computer Science, Clarkson University, Potsdam, NY 136995815, U.S.A. alexis@clarkson.edu. Research supported by NSF grant CCR9877150. y Department of Computer Science, University o...
Resolution and the weak pigeonhole principle
 IN CSL
, 1997
"... We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for treelike resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule. ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for treelike resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule.
Bounded Arithmetic and Propositional Proof Complexity
 in Logic of Computation
, 1995
"... This is a survey of basic facts about bounded arithmetic and about the relationships between bounded arithmetic and propositional proof complexity. We introduce the theories S 2 of bounded arithmetic and characterize their proof theoretic strength and their provably total functions in terms of t ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
This is a survey of basic facts about bounded arithmetic and about the relationships between bounded arithmetic and propositional proof complexity. We introduce the theories S 2 of bounded arithmetic and characterize their proof theoretic strength and their provably total functions in terms of the polynomial time hierarchy. We discuss other axiomatizations of bounded arithmetic, such as minimization axioms. It is shown that the bounded arithmetic hierarchy collapses if and only if bounded arithmetic proves that the polynomial hierarchy collapses. We discuss Frege and extended Frege proof length, and the two translations from bounded arithmetic proofs into propositional proofs. We present some theorems on bounding the lengths of propositional interpolants in terms of cutfree proof length and in terms of the lengths of resolution refutations. We then define the RazborovRudich notion of natural proofs of P NP and discuss Razborov's theorem that certain fragments of bounded arithmetic cannot prove superpolynomial lower bounds on circuit size, assuming a strong cryptographic conjecture. Finally, a complete presentation of a proof of the theorem of Razborov is given. 1 Review of Computational Complexity 1.1 Feasibility This article will be concerned with various "feasible" forms of computability and of provability. For something to be feasibly computable, it must be computable in practice in the real world, not merely e#ectively computable in the sense of being recursively computable.
Separation Results for the Size of ConstantDepth Propositional Proofs
, 2004
"... This paper proves exponential separations between depth d  LK and depth (d + 2 )  LK for every d 2 N utilizing the order induction principle. As a consequence, we obtain an exponential separation between depth d  LK and depth (d+1)  LK for d N . We investigate the relationship between ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
This paper proves exponential separations between depth d  LK and depth (d + 2 )  LK for every d 2 N utilizing the order induction principle. As a consequence, we obtain an exponential separation between depth d  LK and depth (d+1)  LK for d N . We investigate the relationship between the sequencesize, treesize and height of depth d  LKderivations for d 2 N , and describe transformations between them.
Bounded Arithmetic and Constant Depth Frege Proofs
, 2004
"... We discuss the ParisWilkie translation from bounded arithmeticproofs to bounded depth propositional proofs in both relativized and nonrelativized forms. We describe normal forms for proofs in boundedarithmetic, and a definition of \Sigma 0depth for PKproofs that makes the translation from boun ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We discuss the ParisWilkie translation from bounded arithmeticproofs to bounded depth propositional proofs in both relativized and nonrelativized forms. We describe normal forms for proofs in boundedarithmetic, and a definition of \Sigma 0depth for PKproofs that makes the translation from bounded arithmetic to propositional logic particularlytransparent. Using this, we give new proofs of the witnessing theorems for S12and T 12; namely, new proofs that the \Sigma b1definable functions of S12are polynomial time computable and that the \Sigma b1definable functions of T 12 are in Polynomial Local Search (PLS). Both proofs generalize to \Sigma
A BottomUp Approach to Foundations of Mathematics
"... this paper is to survey some results which should give an idea to an outsider of what is going on in this eld and explain motivations for the studied problems. We recommend [3, 5, 15, 11, 34] to those who want to learn more about this subject ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
this paper is to survey some results which should give an idea to an outsider of what is going on in this eld and explain motivations for the studied problems. We recommend [3, 5, 15, 11, 34] to those who want to learn more about this subject