Results 1  10
of
35
A New RecursionTheoretic Characterization Of The Polytime Functions
 COMPUTATIONAL COMPLEXITY
, 1992
"... We give a recursiontheoretic characterization of FP which describes polynomial time computation independently of any externally imposed resource bounds. In particular, this syntactic characterization avoids the explicit size bounds on recursion (and the initial function 2 xy ) of Cobham. ..."
Abstract

Cited by 191 (7 self)
 Add to MetaCart
We give a recursiontheoretic characterization of FP which describes polynomial time computation independently of any externally imposed resource bounds. In particular, this syntactic characterization avoids the explicit size bounds on recursion (and the initial function 2 xy ) of Cobham.
Predicative Recursion and Computational Complexity
, 1992
"... The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making an ..."
Abstract

Cited by 46 (3 self)
 Add to MetaCart
The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct reference to polynomials, time, or even computation. Complexity classes characterized in this way include polynomial time, the functional polytime hierarchy, the logspace decidable problems, and NC. After developing these "resource free" definitions, we apply them to redeveloping the feasible logical system of Cook and Urquhart, and show how this firstorder system relates to the secondorder system of Leivant. The connection is an interesting one since the systems were defined independently and have what appear to be very different rules for the principle of induction. Furthermore it is interesting to see, albeit in a very specific context, how to retract a second order statement, ("inducti...
Interpretability logic
 Mathematical Logic, Proceedings of the 1988 Heyting Conference
, 1990
"... Interpretations are much used in metamathematics. The first application that comes to mind is their use in reductive Hilbertstyle programs. Think of the kind of program proposed by Simpson, Feferman or Nelson (see Simpson[1988], Feferman[1988], Nelson[1986]). Here they serve to compare the strength ..."
Abstract

Cited by 33 (9 self)
 Add to MetaCart
(Show Context)
Interpretations are much used in metamathematics. The first application that comes to mind is their use in reductive Hilbertstyle programs. Think of the kind of program proposed by Simpson, Feferman or Nelson (see Simpson[1988], Feferman[1988], Nelson[1986]). Here they serve to compare the strength of theories, or better to prove
Axiomatizations and Conservation Results for Fragments of Bounded Arithmetic
, 1990
"... This paper presents new results on axiomatizations for fragments of Bounded Arithmetic which improve upon the author's dissertation. It is shown that (# i+1 )PIND and strong # i replacement are consequences of S 2 . Also # i+1 IND is a consequence of T 2 . The latter result is prove ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
(Show Context)
This paper presents new results on axiomatizations for fragments of Bounded Arithmetic which improve upon the author's dissertation. It is shown that (# i+1 )PIND and strong # i replacement are consequences of S 2 . Also # i+1 IND is a consequence of T 2 . The latter result is proved by showing that S i+1 conservative over 2 . Furthermore, S i+1 replacement with respect to Boolean combinations of # i+1 formulas. 1
Bounded Arithmetic and Propositional Proof Complexity
 in Logic of Computation
, 1995
"... This is a survey of basic facts about bounded arithmetic and about the relationships between bounded arithmetic and propositional proof complexity. We introduce the theories S 2 of bounded arithmetic and characterize their proof theoretic strength and their provably total functions in terms of t ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
(Show Context)
This is a survey of basic facts about bounded arithmetic and about the relationships between bounded arithmetic and propositional proof complexity. We introduce the theories S 2 of bounded arithmetic and characterize their proof theoretic strength and their provably total functions in terms of the polynomial time hierarchy. We discuss other axiomatizations of bounded arithmetic, such as minimization axioms. It is shown that the bounded arithmetic hierarchy collapses if and only if bounded arithmetic proves that the polynomial hierarchy collapses. We discuss Frege and extended Frege proof length, and the two translations from bounded arithmetic proofs into propositional proofs. We present some theorems on bounding the lengths of propositional interpolants in terms of cutfree proof length and in terms of the lengths of resolution refutations. We then define the RazborovRudich notion of natural proofs of P NP and discuss Razborov's theorem that certain fragments of bounded arithmetic cannot prove superpolynomial lower bounds on circuit size, assuming a strong cryptographic conjecture. Finally, a complete presentation of a proof of the theorem of Razborov is given. 1 Review of Computational Complexity 1.1 Feasibility This article will be concerned with various "feasible" forms of computability and of provability. For something to be feasibly computable, it must be computable in practice in the real world, not merely e#ectively computable in the sense of being recursively computable.
Cycling in proofs and feasibility
 Transactions of the American Mathematical Society
, 1998
"... Abstract. There is a common perception by which small numbers are considered more concrete and large numbers more abstract. A mathematical formalization of this idea was introduced by Parikh (1971) through an inconsistent theory of feasible numbers in which addition and multiplication are as usual b ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
(Show Context)
Abstract. There is a common perception by which small numbers are considered more concrete and large numbers more abstract. A mathematical formalization of this idea was introduced by Parikh (1971) through an inconsistent theory of feasible numbers in which addition and multiplication are as usual but for which some very large number is defined to be not feasible. Parikh shows that sufficiently short proofs in this theory can only prove true statements of arithmetic. We pursue these topics in light of logical flow graphs of proofs (Buss, 1991) and show that Parikh’s lower bound for concrete consistency reflects the presence of cycles in the logical graphs of short proofs of feasibility of large numbers. We discuss two concrete constructions which show the bound to be optimal and bring out the dynamical aspect of formal proofs. For this paper the concept of feasible numbers has two roles, as an idea with its own life and as a vehicle for exploring general principles on the dynamics and geometry of proofs. Cycles can be seen as a measure of how complicated a proof can be. We prove that short proofs must have cycles. 1.
On Feasible Numbers
 Logic and Computational Complexity, LNCS Vol. 960
, 1995
"... . A formal approach to feasible numbers, as well as to middle and small numbers, is introduced, based on ideas of Parikh (1971) and improving his formalization. The "vague" set F of feasible numbers intuitively satisfies the axioms 0 2 F , F + 1 ` F and 2 1000 62 F , where the latter is ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
. A formal approach to feasible numbers, as well as to middle and small numbers, is introduced, based on ideas of Parikh (1971) and improving his formalization. The "vague" set F of feasible numbers intuitively satisfies the axioms 0 2 F , F + 1 ` F and 2 1000 62 F , where the latter is stronger than a condition considered by Parikh, and seems to be treated rigorously here for the first time. Our technical considerations, though quite simple, have some unusual consequences. A discussion of methodological questions and of relevance to the foundations of mathematics and of computer science is an essential part of the paper. 1 Introduction How to formalize the intuitive notion of feasible numbers? To see what feasible numbers are, let us start by counting: 0,1,2,3, and so on. At this point, A.S. YeseninVolpin (in his "Analysis of potential feasibility", 1959) asks: "What does this `and so on' mean?" "Up to what extent `and so on'?" And he answers: "Up to exhaustion!" Note that by cos...
Bounded Arithmetic and Constant Depth Frege Proofs
, 2004
"... We discuss the ParisWilkie translation from bounded arithmeticproofs to bounded depth propositional proofs in both relativized and nonrelativized forms. We describe normal forms for proofs in boundedarithmetic, and a definition of \Sigma 0depth for PKproofs that makes the translation from boun ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
We discuss the ParisWilkie translation from bounded arithmeticproofs to bounded depth propositional proofs in both relativized and nonrelativized forms. We describe normal forms for proofs in boundedarithmetic, and a definition of \Sigma 0depth for PKproofs that makes the translation from bounded arithmetic to propositional logic particularlytransparent. Using this, we give new proofs of the witnessing theorems for S12and T 12; namely, new proofs that the \Sigma b1definable functions of S12are polynomial time computable and that the \Sigma b1definable functions of T 12 are in Polynomial Local Search (PLS). Both proofs generalize to \Sigma