Results 1 - 10
of
323
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
- IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, 2005
"... This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes vario ..."
Abstract
-
Cited by 1490 (23 self)
- Add to MetaCart
(Show Context)
This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes various limitations of current recommendation methods and discusses possible extensions that can improve recommendation capabilities and make recommender systems applicable to an even broader range of applications. These extensions include, among others, an improvement of understanding of users and items, incorporation of the contextual information into the recommendation process, support for multcriteria ratings, and a provision of more flexible and less intrusive types of recommendations.
Evaluating collaborative filtering recommender systems
- ACM TRANSACTIONS ON INFORMATION SYSTEMS
, 2004
"... ..."
Factorization meets the neighborhood: a multifaceted collaborative filtering model
- In Proc. of the 14th ACM SIGKDD conference
, 2008
"... Recommender systems provide users with personalized suggestions for products or services. These systems often rely on Collaborating Filtering (CF), where past transactions are analyzed in order to establish connections between users and products. The two more successful approaches to CF are latent f ..."
Abstract
-
Cited by 424 (12 self)
- Add to MetaCart
(Show Context)
Recommender systems provide users with personalized suggestions for products or services. These systems often rely on Collaborating Filtering (CF), where past transactions are analyzed in order to establish connections between users and products. The two more successful approaches to CF are latent factor models, which directly profile both users and products, and neighborhood models, which analyze similarities between products or users. In this work we introduce some innovations to both approaches. The factor and neighborhood models can now be smoothly merged, thereby building a more accurate combined model. Further accuracy improvements are achieved by extending the models to exploit both explicit and implicit feedback by the users. The methods are tested on the Netflix data. Results are better than those previously published on that dataset. In addition, we suggest a new evaluation metric, which highlights the differences among methods, based on their performance at a top-K recommendation task.
Latent Semantic Models for Collaborative filtering
- ACM Trans. Information Systems
"... Collaborative filtering aims at learning predictive models of user preferences, interests or behavior from community data, that is, a database of available user preferences. In this article, we describe a new family of model-based algorithms designed for this task. These algorithms rely on a statist ..."
Abstract
-
Cited by 331 (1 self)
- Add to MetaCart
Collaborative filtering aims at learning predictive models of user preferences, interests or behavior from community data, that is, a database of available user preferences. In this article, we describe a new family of model-based algorithms designed for this task. These algorithms rely on a statistical modelling technique that introduces latent class variables in a mixture model setting to discover user communities and prototypical interest profiles. We investigate several variations to deal with discrete and continuous response variables as well as with different objective functions. The main advantages of this technique over standard memory-based methods are higher accuracy, constant time prediction, and an explicit and compact model representation. The latter can also be used to mine for user communitites. The experimental evaluation shows that substantial improvements in accucracy over existing methods and published results can be obtained.
Methods and Metrics for Cold-Start Recommendations
- PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL
, 2002
"... We have developed a method for recommending items that combines content and collaborative data under a single probabilistic framework. We benchmark our algorithm against a nave Bayes classifier on the cold-start problem, where we wish to recommend items that no one in the community has yet rated. We ..."
Abstract
-
Cited by 330 (7 self)
- Add to MetaCart
(Show Context)
We have developed a method for recommending items that combines content and collaborative data under a single probabilistic framework. We benchmark our algorithm against a nave Bayes classifier on the cold-start problem, where we wish to recommend items that no one in the community has yet rated. We systematically explore three testing methodologies using a publicly available data set, and explain how these methods apply to specific real-world applications. We advocate heuristic recommenders when benchmarking to give competent baseline performance. We introduce a new performance metric, the CROC curve, and demonstrate empirically that the various components of our testing strategy combine to obtain deeper understanding of the performance characteristics of recommender systems. Though the emphasis of our testing is on cold-start recommending, our methods for recommending and evaluation are general.
Item-Based Top-N Recommendation Algorithms
- ACM TRANSACTIONS ON INFORMATION SYSTEMS
, 2004
"... ... In this paper we present one such class of model-based recommendation algorithms that first determines the similarities between the various items and then uses them to identify the set of items to be recommended. The key steps in this class of algorithms are (i) the method used to compute the si ..."
Abstract
-
Cited by 306 (2 self)
- Add to MetaCart
... In this paper we present one such class of model-based recommendation algorithms that first determines the similarities between the various items and then uses them to identify the set of items to be recommended. The key steps in this class of algorithms are (i) the method used to compute the similarity between the items, and (ii) the method used to combine these similarities in order to compute the similarity between a basket of items and a candidate recommender item. Our experimental evaluation on eight real datasets shows that these item-based algorithms are up to two orders of magnitude faster than the traditional user-neighborhood based recommender systems and provide recommendations with comparable or better quality
Improving recommendation lists through topic diversification
, 2005
"... In this work we present topic diversification, a novel method designed to balance and diversify personalized recommendation lists in order to reflect the user’s complete spectrum of interests. Though being detrimental to average accuracy, we show that our method improves user satisfaction with recom ..."
Abstract
-
Cited by 293 (13 self)
- Add to MetaCart
(Show Context)
In this work we present topic diversification, a novel method designed to balance and diversify personalized recommendation lists in order to reflect the user’s complete spectrum of interests. Though being detrimental to average accuracy, we show that our method improves user satisfaction with recommendation lists, in particular for lists generated using the common item-based collaborative filtering algorithm. Our work builds upon prior research on recommender systems, looking at properties of recommendation lists as entities in their own right rather than specifically focusing on the accuracy of individual recommendations. We introduce the intra-list similarity metric to assess the topical diversity of recommendation lists and the topic diversification approach for decreasing the intra-list similarity. We evaluate our method using book recommendation data, including offline analysis on 361, 349 ratings and an online study involving more than 2, 100 subjects.
Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach
- ACM Transactions on Information Systems
, 2005
"... The paper presents a multidimensional (MD) approach to recommender systems that can provide recommendations based on additional contextual information besides the typical information on users and items used in most of the current recommender systems. This approach supports multiple dimensions, exten ..."
Abstract
-
Cited by 236 (9 self)
- Add to MetaCart
(Show Context)
The paper presents a multidimensional (MD) approach to recommender systems that can provide recommendations based on additional contextual information besides the typical information on users and items used in most of the current recommender systems. This approach supports multiple dimensions, extensive profiling, and hierarchical aggregation of recommendations. The paper also presents a multidimensional rating estimation method capable of selecting two-dimensional segments of ratings pertinent to the recommendation context and applying standard collaborative filtering or other traditional two-dimensional rating estimation techniques to these segments. A comparison of the multidimensional and two-dimensional rating estimation approaches is made, and the tradeoffs between the two are studied. Moreover, the paper introduces a combined rating estimation method that identifies the situations where the MD approach outperforms the standard two-dimensional approach and uses the MD approach in those situations and the standard two-dimensional approach elsewhere. Finally, the paper presents a pilot empirical study of the combined approach, using a multidimensional movie recommender system that was developed for implementing this approach and testing its performance. 1 1.
Collaborative filtering with privacy via factor analysis
- In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval
, 2002
"... Collaborative filtering is valuable in e-commerce, and for direct recommendations for music, movies, news etc. But today’s systems use centralized databases and have several disadvantages, including privacy risks. As we move toward ubiquitous computing, there is a great potential for individuals to ..."
Abstract
-
Cited by 210 (9 self)
- Add to MetaCart
(Show Context)
Collaborative filtering is valuable in e-commerce, and for direct recommendations for music, movies, news etc. But today’s systems use centralized databases and have several disadvantages, including privacy risks. As we move toward ubiquitous computing, there is a great potential for individuals to share all kinds of information about places and things to do, see and buy, but the privacy risks are severe. In this paper we introduce a peer-to-peer protocol for collaborative filtering which protects the privacy of individual data. A second contribution of this paper is a new collaborative filtering algorithm based on factor analysis which appears to be the most accurate method for CF to date. The new algorithm has other advantages in speed and storage over previous algorithms. It is based on a careful probabilistic model of user choice, and on a probabilistically sound approach to dealing with missing data. Our experiments on several test datasets show that the algorithm is more accurate than previously reported methods, and the improvements increase with the sparseness of the dataset. Finally, factor analysis with privacy is applicable to other kinds of statistical analyses of survey or questionaire data scientists (e.g. web surveys or questionaires).
Collaborative filtering for implicit feedback datasets
- In IEEE International Conference on Data Mining (ICDM 2008
, 2008
"... A common task of recommender systems is to improve customer experience through personalized recommendations based on prior implicit feedback. These systems passively track different sorts of user behavior, such as purchase history, watching habits and browsing activity, in order to model user prefer ..."
Abstract
-
Cited by 193 (8 self)
- Add to MetaCart
(Show Context)
A common task of recommender systems is to improve customer experience through personalized recommendations based on prior implicit feedback. These systems passively track different sorts of user behavior, such as purchase history, watching habits and browsing activity, in order to model user preferences. Unlike the much more extensively researched explicit feedback, we do not have any direct input from the users regarding their preferences. In particular, we lack substantial evidence on which products consumer dislike. In this work we identify unique properties of implicit feedback datasets. We propose treating the data as indication of positive and negative preference associated with vastly varying confidence levels. This leads to a factor model which is especially tailored for implicit feedback recommenders. We also suggest a scalable optimization procedure, which scales linearly with the data size. The algorithm is used successfully within a recommender system for television shows. It compares favorably with well tuned implementations of other known methods. In addition, we offer a novel way to give explanations to recommendations given by this factor model. 1