Results 11  20
of
473
Combinatorial Auctions with Decreasing Marginal Utilities
, 2001
"... This paper considers combinatorial auctions among such submodular buyers. The valuations of such buyers are placed within a hierarchy of valuations that exhibit no complementarities, a hierarchy that includes also OR and XOR combinations of singleton valuations, and valuations satisfying the gross s ..."
Abstract

Cited by 138 (21 self)
 Add to MetaCart
This paper considers combinatorial auctions among such submodular buyers. The valuations of such buyers are placed within a hierarchy of valuations that exhibit no complementarities, a hierarchy that includes also OR and XOR combinations of singleton valuations, and valuations satisfying the gross substitutes property. Those last valuations are shown to form a zeromeasure subset of the submodular valuations that have positive measure. While we show that the allocation problem among submodular valuations is NPhard, we present an efficient greedy 2approximation algorithm for this case and generalize it to the case of limited complementarities. No such approximation algorithm exists in a setting allowing for arbitrary complementarities. Some results about strategic aspects of combinatorial auctions among players with decreasing marginal utilities are also presented.
Faster scaling algorithms for network problems
 SIAM J. COMPUT
, 1989
"... This paper presents algorithms for the assignment problem, the transportation problem, and the minimumcost flow problem of operations research. The algorithms find a minimumcost solution, yet run in time close to the bestknown bounds for the corresponding problems without costs. For example, the ..."
Abstract

Cited by 126 (4 self)
 Add to MetaCart
This paper presents algorithms for the assignment problem, the transportation problem, and the minimumcost flow problem of operations research. The algorithms find a minimumcost solution, yet run in time close to the bestknown bounds for the corresponding problems without costs. For example, the assignment problem (equivalently, minimumcost matching in a bipartite graph) can be solved in O(v/’rn log(nN)) time, where n, m, and N denote the number of vertices, number of edges, and largest magnitude of a cost; costs are assumed to be integral. The algorithms work by scaling. As in the work of Goldberg and Tarjan, in each scaled problem an approximate optimum solution is found, rather than an exact optimum.
An Incremental Algorithm for a Generalization of the ShortestPath Problem
, 1992
"... The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also subsume ..."
Abstract

Cited by 116 (1 self)
 Add to MetaCart
The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also subsumes the problem of finding optimal hyperpaths in directed hypergraphs (under varying optimization criteria) that has received attention recently. In this paper we present an incremental algorithm for a version of the grammar problem. As a special case of this algorithm we obtain an efficient incremental algorithm for the singlesource shortestpath problem with positive edge lengths. The aspect of our work that distinguishes it from other work on the dynamic shortestpath problem is its ability to handle "multiple heterogeneous modifications": between updates, the input graph is allowed to be restructured by an arbitrary mixture of edge insertions, edge deletions, and edgelength changes.
An Optimization Technique for Protocol Conformance Test Generation Based on UIO Sequences and Rural Chinese Postman Tours
, 1991
"... This paper describes a method for generating test sequences for checking the conformance of a protocol implementation to its specification. A Rural Chinese Postman Tour is used to determine a minimumcost tour of the transition graph of a finitestate machine. When used in combination with Unique In ..."
Abstract

Cited by 110 (14 self)
 Add to MetaCart
This paper describes a method for generating test sequences for checking the conformance of a protocol implementation to its specification. A Rural Chinese Postman Tour is used to determine a minimumcost tour of the transition graph of a finitestate machine. When used in combination with Unique Input/Output Sequences [18], the technique yields an efficient method for computing a test sequence for protocol conformance testing.
Learning with mixtures of trees
 Journal of Machine Learning Research
, 2000
"... This paper describes the mixturesoftrees model, a probabilistic model for discrete multidimensional domains. Mixturesoftrees generalize the probabilistic trees of Chow and Liu [6] in a different and complementary direction to that of Bayesian networks. We present efficient algorithms for learnin ..."
Abstract

Cited by 109 (2 self)
 Add to MetaCart
This paper describes the mixturesoftrees model, a probabilistic model for discrete multidimensional domains. Mixturesoftrees generalize the probabilistic trees of Chow and Liu [6] in a different and complementary direction to that of Bayesian networks. We present efficient algorithms for learning mixturesoftrees models in maximum likelihood and Bayesian frameworks. We also discuss additional efficiencies that can be obtained when data are “sparse, ” and we present data structures and algorithms that exploit such sparseness. Experimental results demonstrate the performance of the model for both density estimation and classification. We also discuss the sense in which treebased classifiers perform an implicit form of feature selection, and demonstrate a resulting insensitivity to irrelevant attributes.
Faster algorithms for the shortest path problem
, 1990
"... Efficient implementations of Dijkstra's shortest path algorithm are investigated. A new data structure, called the radix heap, is proposed for use in this algorithm. On a network with n vertices, mn edges, and nonnegative integer arc costs bounded by C, a onelevel form of radix heap gives a time b ..."
Abstract

Cited by 104 (10 self)
 Add to MetaCart
Efficient implementations of Dijkstra's shortest path algorithm are investigated. A new data structure, called the radix heap, is proposed for use in this algorithm. On a network with n vertices, mn edges, and nonnegative integer arc costs bounded by C, a onelevel form of radix heap gives a time bound for Dijkstra's algorithm of O(m + n log C). A twolevel form of radix heap gives a bound of O(m + n log C/log log C). A combination of a radix heap and a previously known data structure called a Fibonacci heap gives a bound of O(m + n /log C). The best previously known bounds are O(m + n log n) using Fibonacci heaps alone and O(m log log C) using the priority queue structure of Van Emde Boas et al. [17].
Computing the shortest path: A* search meets graph theory
, 2005
"... We study the problem of finding a shortest path between two vertices in a directed graph. This is an important problem with many applications, including that of computing driving directions. We allow preprocessing the graph using a linear amount of extra space to store auxiliary information, and usi ..."
Abstract

Cited by 97 (4 self)
 Add to MetaCart
We study the problem of finding a shortest path between two vertices in a directed graph. This is an important problem with many applications, including that of computing driving directions. We allow preprocessing the graph using a linear amount of extra space to store auxiliary information, and using this information to answer shortest path queries quickly. Our approach uses A ∗ search in combination with a new graphtheoretic lowerbounding technique based on landmarks and the triangle inequality. We also develop new bidirectional variants of A ∗ search and investigate several variants of the new algorithms to find those that are most efficient in practice. Our algorithms compute optimal shortest paths and work on any directed graph. We give experimental results showing that the most efficient of our new algorithms outperforms previous algorithms, in particular A ∗ search with Euclidean bounds, by a wide margin on road networks. We also experiment with several synthetic graph families.
An Optimal Algorithm for Euclidean Shortest Paths in the Plane
 SIAM J. Comput
, 1997
"... We propose an optimaltime algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worstcase time O(n log n) and requires O(n log n) space, where n is the total number of vertice ..."
Abstract

Cited by 86 (1 self)
 Add to MetaCart
We propose an optimaltime algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worstcase time O(n log n) and requires O(n log n) space, where n is the total number of vertices in the obstacle polygons. The algorithm is based on an efficient implementation of wavefront propagation among polygonal obstacles, and it actually computes a planar map encoding shortest paths from a fixed source point to all other points of the plane; the map can be used to answer singlesource shortest path queries in O(logn) time. The time complexity of our algorithm is a significant improvement over all previously published results on the shortest path problem. Finally, we also discuss extensions to more general shortest path problems, involving nonpoint and multiple sources. 1 Introduction 1.1 The Background and Our Result The Euclidean shortest path problem is one of the o...
Faster approximation algorithms for the unit capacity concurrent flow problem with applications to routing and finding sparse cuts
 SIAM Journal on Computing
, 1994
"... Abstract. This paper describes new algorithms for approximately solving the concurrent multicommodity flow problem with uniform capacities. These algorithms are much faster than algorithms discovered previously. Besides being an important problem in its own right, the uniformcapacity concurrent flo ..."
Abstract

Cited by 84 (20 self)
 Add to MetaCart
Abstract. This paper describes new algorithms for approximately solving the concurrent multicommodity flow problem with uniform capacities. These algorithms are much faster than algorithms discovered previously. Besides being an important problem in its own right, the uniformcapacity concurrent flow problem has many interesting applications. Leighton and Rao used uniformcapacity concurrent flow to find an approximately "sparsest cut " in a graph and thereby approximately solve a wide variety of graph problems, including minimum feedback arc set, minimum cut linear arrangement, and minimum area layout. However, their method appeared to be impractical as it required solving a large linear program. This paper shows that their method might be practical by giving an O(m log m) expectedtime randomized algorithm for their concurrent flow problem on an medge graph. Raghavan and Thompson used uniformcapacity concurrent flow to solve approximately a channel width minimization problem in very large scale integration. An O (k 3/2 (m + n log n)) expectedtime randomized algorithm and an O (k min {n, k} (m + n log n) log k) deterministic algorithm is given for this problem when the channel width is f2 (log n), where k denotes the number of wires to be routed in an nnode, medge network. Key words, multicommodity flow, approximation, concurrent flow, graph separators, VLSI routing AMS subject classification. 68Q25, 90C08, 90C27 1. Introduction. The
All Pairs Almost Shortest Paths
 SIAM Journal on Computing
, 1996
"... Let G = (V; E) be an unweighted undirected graph on n vertices. A simple argument shows that computing all distances in G with an additive onesided error of at most 1 is as hard as Boolean matrix multiplication. Building on recent work of Aingworth, Chekuri and Motwani, we describe g) time ..."
Abstract

Cited by 83 (8 self)
 Add to MetaCart
Let G = (V; E) be an unweighted undirected graph on n vertices. A simple argument shows that computing all distances in G with an additive onesided error of at most 1 is as hard as Boolean matrix multiplication. Building on recent work of Aingworth, Chekuri and Motwani, we describe g) time algorithm APASP 2 for computing all distances in G with an additive onesided error of at most 2. The algorithm APASP 2 is simple, easy to implement, and faster than the fastest known matrix multiplication algorithm. Furthermore, for every even k ? 2, we describe an g) time algorithm APASP k for computing all distances in G with an additive onesided error of at most k.