Results 1  10
of
43
Complexity and Approximation
, 1999
"... Abstract. In this survey the following model is considered. We assume that an instance I of a computationally hard optimization problem has been solved and that we know the optimum solution of such instance. Then a new instance I ′ is proposed, obtained by means of a slight perturbation of instance ..."
Abstract

Cited by 176 (1 self)
 Add to MetaCart
Abstract. In this survey the following model is considered. We assume that an instance I of a computationally hard optimization problem has been solved and that we know the optimum solution of such instance. Then a new instance I ′ is proposed, obtained by means of a slight perturbation of instance I. How can we exploit the knowledge we have on the solution of instance I to compute a (approximate) solution of instance I ′ in an efficient way? This computation model is called reoptimization and is of practical interest in various circumstances. In this article we first discuss what kind of performance we can expect for specific classes of problems and then we present some classical optimization problems (i.e. Max Knapsack, Min Steiner Tree, Scheduling) in which this approach has been fruitfully applied. Subsequently, we address vehicle routing problems and we show how the reoptimization approach can be used to obtain good approximate solution in an efficient way for some of these problems. 1
An Incremental Algorithm for a Generalization of the ShortestPath Problem
, 1992
"... The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also subsume ..."
Abstract

Cited by 116 (1 self)
 Add to MetaCart
The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also subsumes the problem of finding optimal hyperpaths in directed hypergraphs (under varying optimization criteria) that has received attention recently. In this paper we present an incremental algorithm for a version of the grammar problem. As a special case of this algorithm we obtain an efficient incremental algorithm for the singlesource shortestpath problem with positive edge lengths. The aspect of our work that distinguishes it from other work on the dynamic shortestpath problem is its ability to handle "multiple heterogeneous modifications": between updates, the input graph is allowed to be restructured by an arbitrary mixture of edge insertions, edge deletions, and edgelength changes.
Shortestpath and minimumdelay algorithms in networks with timedependent edgelength
 Journal of the ACM
, 1990
"... We consider in this paper the shortestpath problem in networks in which the delay (or weight) of the edges changes with time according to arbitrary functions. We present algorithms for finding the shortestpath and minimumdelay under various waiting constraints and investigate the properties of th ..."
Abstract

Cited by 92 (6 self)
 Add to MetaCart
We consider in this paper the shortestpath problem in networks in which the delay (or weight) of the edges changes with time according to arbitrary functions. We present algorithms for finding the shortestpath and minimumdelay under various waiting constraints and investigate the properties of the derived path. We show that if departure time from the source node is unrestricted then a shortest path can be found that is simple and achieves a delay as short as the most unrestricted path. In the case of restricted transit, it is shown that there exist cases where the minimum delay is finite but the path that achieves it is infinite.
A New Approach to Dynamic All Pairs Shortest Paths
, 2002
"... We study novel combinatorial properties of graphs that allow us to devise a completely new approach to dynamic all pairs shortest paths problems. Our approach yields a fully dynamic algorithm for general directed graphs with nonnegative realvalued edge weights that supports any sequence of operatio ..."
Abstract

Cited by 73 (9 self)
 Add to MetaCart
We study novel combinatorial properties of graphs that allow us to devise a completely new approach to dynamic all pairs shortest paths problems. Our approach yields a fully dynamic algorithm for general directed graphs with nonnegative realvalued edge weights that supports any sequence of operations in e O(n amortized time per update and unit worstcase time per distance query, where n is the number of vertices. We can also report shortest paths in optimal worstcase time. These bounds improve substantially over previous results and solve a longstanding open problem. Our algorithm is deterministic and uses simple data structures.
Maintenance of a Minimum Spanning Forest in a Dynamic Plane Graph
, 1992
"... We give an efficient algorithm for maintaining a minimum spanning forest of a plane graph subject to online modifications. The modifications supported include changes in the edge weights, and insertion and deletion of edges and vertices which are consistent with the given embedding. Our algorithm r ..."
Abstract

Cited by 68 (26 self)
 Add to MetaCart
We give an efficient algorithm for maintaining a minimum spanning forest of a plane graph subject to online modifications. The modifications supported include changes in the edge weights, and insertion and deletion of edges and vertices which are consistent with the given embedding. Our algorithm runs in O(log n) time per operation and O(n) space.
Dynamic Graph Algorithms
, 1999
"... Introduction In many applications of graph algorithms, including communication networks, graphics, assembly planning, and VLSI design, graphs are subject to discrete changes, such as additions or deletions of edges or vertices. In the last decade there has been a growing interest in such dynamicall ..."
Abstract

Cited by 55 (0 self)
 Add to MetaCart
Introduction In many applications of graph algorithms, including communication networks, graphics, assembly planning, and VLSI design, graphs are subject to discrete changes, such as additions or deletions of edges or vertices. In the last decade there has been a growing interest in such dynamically changing graphs, and a whole body of algorithms and data structures for dynamic graphs has been discovered. This chapter is intended as an overview of this field. In a typical dynamic graph problem one would like to answer queries on graphs that are undergoing a sequence of updates, for instance, insertions and deletions of edges and vertices. The goal of a dynamic graph algorithm is to update efficiently the solution of a problem after dynamic changes, rather than having to recompute it from scratch each time. Given their powerful versatility, it is not surprising that dynamic algorithms and dynamic data structures are often more difficult to design and analyze than their static c
On the Computational Complexity of Dynamic Graph Problems
 THEORETICAL COMPUTER SCIENCE
, 1996
"... ..."
Complexity Models for Incremental Computation
, 1994
"... We present a new complexity theoretic approach to incremental computation. We define complexity classes that capture the intuitive notion of incremental efficiency and study their relation to existing complexity classes. We show that problems that have small sequential space complexity also have sma ..."
Abstract

Cited by 43 (4 self)
 Add to MetaCart
We present a new complexity theoretic approach to incremental computation. We define complexity classes that capture the intuitive notion of incremental efficiency and study their relation to existing complexity classes. We show that problems that have small sequential space complexity also have small incremental time complexity. We show that all common LOGSPACEcomplete problems for P are also incrPOLYLOGTIMEcomplete for P. We introduce a restricted notion of completeness called NRPcompleteness and show that problems which are NRPcomplete for P are also incrPOLYLOGTIMEcomplete for P. We also give incrementally complete problems for NLOGSPACE, LOGSPACE, and nonuniform NC¹. We show that under certain restrictions problems which have efficient dynamic solutions also have efficient parallel solutions. We also consider a nonuniform model of incremental computation and show that in this model most problems have almost linear complexity. In addition, we present some techniques f...
Fully Dynamic All Pairs Shortest Paths with Real Edge Weights
 In IEEE Symposium on Foundations of Computer Science
, 2001
"... We present the first fully dynamic algorithm for maintaining all pairs shortest paths in directed graphs with realvalued edge weights. Given a dynamic directed graph G such that each edge can assume at most S di#erent real values, we show how to support updates in O(n amortized time and que ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
We present the first fully dynamic algorithm for maintaining all pairs shortest paths in directed graphs with realvalued edge weights. Given a dynamic directed graph G such that each edge can assume at most S di#erent real values, we show how to support updates in O(n amortized time and queries in optimal worstcase time. No previous fully dynamic algorithm was known for this problem. In the special case where edge weights can only be increased, we give a randomized algorithm with onesided error which supports updates faster in O(S We also show how to obtain query/update tradeo#s for this problem, by introducing two new families of algorithms. Algorithms in the first family achieve an update bound of O(n/k), and improve over the best known update bounds for k in the . Algorithms in the second family achieve an update bound of ), and are competitive with the best known update bounds (first family included) for k in the range (n/S) # Work partially supported by the IST Programme of the EU under contract n. IST199914. 186 (ALCOMFT) and by CNR, the Italian National Research Council, under contract n. 01.00690.CT26. Portions of this work have been presented at the 42nd Annual Symp. on Foundations of Computer Science (FOCS 2001) [8] and at the 29th International Colloquium on Automata, Languages, and Programming (ICALP'02) [9].
Lifelong Planning A*
, 2005
"... Heuristic search methods promise to find shortest paths for pathplanning problems faster than uninformed search methods. Incremental search methods, on the other hand, promise to find shortest paths for series of similar pathplanning problems faster than is possible by solving each pathplanning p ..."
Abstract

Cited by 28 (3 self)
 Add to MetaCart
Heuristic search methods promise to find shortest paths for pathplanning problems faster than uninformed search methods. Incremental search methods, on the other hand, promise to find shortest paths for series of similar pathplanning problems faster than is possible by solving each pathplanning problem from scratch. In this article, we develop Lifelong Planning A * (LPA*), an incremental version of A * that combines ideas from the artificial intelligence and the algorithms literature. It repeatedly finds shortest paths from a given start vertex to a given goal vertex while the edge costs of a graph change or vertices are added or deleted. Its first search is the same as that of a version of A * that breaks ties in favor of vertices with smaller gvalues but many of the subsequent searches are potentially faster because it reuses those parts of the previous search tree that are identical to the new one. We present analytical results that demonstrate its similarity to A * and experimental results that demonstrate its potential advantage in two different domains if the pathplanning problems change only slightly and the changes are close to the goal.