Results 1  10
of
113
On the Relative Expressiveness of Description Logics and Predicate Logics
 ARTIFICIAL INTELLIGENCE JOURNAL
, 1996
"... It is natural to view concept and role definitions in Description Logics as expressing monadic and dyadic predicates in Predicate Calculus. We show that the descriptions built using the constructors usually considered in the DL literature are characterized exactly as the predicates definable by form ..."
Abstract

Cited by 145 (3 self)
 Add to MetaCart
It is natural to view concept and role definitions in Description Logics as expressing monadic and dyadic predicates in Predicate Calculus. We show that the descriptions built using the constructors usually considered in the DL literature are characterized exactly as the predicates definable by formulas in ¨L³, the subset of First Order Predicate Calculus with monadic and dyadic predicates which allows only three variable symbols. In order to handle “number bounds”, we allow numeric quantifiers, and for transitive closure of roles we use infinitary disjunction. Using previous results in the literature concerning languages with limited numbers of variables, we get as corollaries the existence of formulae of FOPC which cannot be expressed as descriptions. We also show that by omitting role composition, descriptions express exactly the formulae in ¨L², which is known to be decidable.
Describing Graphs: a FirstOrder Approach to Graph Canonization
, 1990
"... In this paper we ask the question, "What must be added to firstorder logic plus leastfixed point to obtain exactly the polynomialtime properties of unordered graphs?" We consider the languages Lk consisting of firstorder logic restricted to k variables and Ck consisting of Lk plus "counting ..."
Abstract

Cited by 57 (7 self)
 Add to MetaCart
In this paper we ask the question, "What must be added to firstorder logic plus leastfixed point to obtain exactly the polynomialtime properties of unordered graphs?" We consider the languages Lk consisting of firstorder logic restricted to k variables and Ck consisting of Lk plus "counting quantifiers". We give efficient canonization algorithms for graphs characterized by Ck or Lk . It follows from known results that all trees and almost all graphs are characterized by C2 .
Infinitary Logic and Inductive Definability over Finite Structures
 Information and Computation
, 1995
"... The extensions of firstorder logic with a least fixed point operator (FO + LFP) and with a partial fixed point operator (FO + PFP) are known to capture the complexity classes P and PSPACE respectively in the presence of an ordering relation over finite structures. Recently, Abiteboul and Vianu [Abi ..."
Abstract

Cited by 56 (6 self)
 Add to MetaCart
The extensions of firstorder logic with a least fixed point operator (FO + LFP) and with a partial fixed point operator (FO + PFP) are known to capture the complexity classes P and PSPACE respectively in the presence of an ordering relation over finite structures. Recently, Abiteboul and Vianu [Abiteboul and Vianu, 1991b] investigated the relationship of these two logics in the absence of an ordering, using a machine model of generic computation. In particular, they showed that the two languages have equivalent expressive power if and only if P = PSPACE. These languages can also be seen as fragments of an infinitary logic where each formula has a bounded number of variables, L ! 1! (see, for instance, [Kolaitis and Vardi, 1990]). We investigate this logic of finite structures and provide a normal form for it. We also present a treatment of the results in [Abiteboul and Vianu, 1991b] from this point of view. In particular, we show that we can write a formula of FO + LFP that defines ...
Counting Quantifiers, Successor Relations, and Logarithmic Space
 Journal of Computer and System Sciences
"... Given a successor relation S (i.e., a directed line graph), and given two distinguished points s and t, the problem ORD is to determine whether s precedes t in the unique ordering defined by S. We show that ORD is Lcomplete (via quantifierfree projections). We then show that firstorder logic with ..."
Abstract

Cited by 51 (2 self)
 Add to MetaCart
Given a successor relation S (i.e., a directed line graph), and given two distinguished points s and t, the problem ORD is to determine whether s precedes t in the unique ordering defined by S. We show that ORD is Lcomplete (via quantifierfree projections). We then show that firstorder logic with counting quantifiers, a logic that captures TC 0 ([BIS90]) over structures with a builtin totalordering, can not express ORD. Our original proof of this in the conference version of this paper ([Ete95]) employed an EhrenfeuchtFraiss'e Game for firstorder logic with counting ([IL90]). Here we show how the result follows from a more general one obtained independently by Nurmonen, [Nur96]. We then show that an appropriately modified version of the EF game is "complete" for the logic with counting in the sense that it provides a necessary and sufficient condition for expressibility in the logic. We observe that the Lcomplete problem ORD is essentially sparse if we ignore reorderings of v...
On the Decision Problem for TwoVariable FirstOrder Logic
, 1997
"... We identify the computational complexity of the satisfiability problem for FO², the fragment of firstorder logic consisting of all relational firstorder sentences with at most two distinct variables. Although this fragment was shown to be decidable a long time ago, the computational complexity ..."
Abstract

Cited by 48 (1 self)
 Add to MetaCart
We identify the computational complexity of the satisfiability problem for FO², the fragment of firstorder logic consisting of all relational firstorder sentences with at most two distinct variables. Although this fragment was shown to be decidable a long time ago, the computational complexity of its decision problem has not been pinpointed so far. In 1975 Mortimer proved that FO² has the finitemodel property, which means that if an FO²sentence is satisfiable, then it has a finite model. Moreover, Mortimer showed that every satisfiable FO²sentence has a model whose size is at most doubly exponential in the size of the sentence. In this paper, we improve Mortimer's bound by one exponential and show that every satisfiable FO²sentence has a model whose size is at most exponential in the size of the sentence. As a consequence, we establish that the satisfiability problem for FO² is NEXPTIMEcomplete.
Infinitary Logics and 01 Laws
 Information and Computation
, 1992
"... We investigate the in nitary logic L 1! , in which sentences may have arbitrary disjunctions and conjunctions, but they involve only a nite number of distinct variables. We show that various xpoint logics can be viewed as fragments of L 1! , and we describe a gametheoretic characterizat ..."
Abstract

Cited by 43 (4 self)
 Add to MetaCart
We investigate the in nitary logic L 1! , in which sentences may have arbitrary disjunctions and conjunctions, but they involve only a nite number of distinct variables. We show that various xpoint logics can be viewed as fragments of L 1! , and we describe a gametheoretic characterization of the expressive power of the logic. Finally, we study asymptotic probabilities of properties 1! on nite structures. We show that the 01 law holds for L 1! , i.e., the asymptotic probability of every sentence in this logic exists and is equal to either 0 or 1. This result subsumes earlier work on asymptotic probabilities for various xpoint logics and reveals the boundary of 01 laws for in nitary logics.
Feasible Computation through Model Theory
, 1993
"... The computational complexity of a problem is usually defined in terms of the resources required on some machine model of computation. An alternative view looks at the complexity of describing the problem (seen as a collection of relational structures) in a logic, measuring logical resources such as ..."
Abstract

Cited by 36 (7 self)
 Add to MetaCart
The computational complexity of a problem is usually defined in terms of the resources required on some machine model of computation. An alternative view looks at the complexity of describing the problem (seen as a collection of relational structures) in a logic, measuring logical resources such as the number of variables, quantifiers, operators, etc. A close correspondence has been observed between these two, with many natural logics corresponding exactly to independently defined complexity classes. For the complexity classes that are generally identified with feasible computation, such characterizations require the presence of a linear order on the domain of every structure, in which case the class PTIME is characterized by an extension of firstorder logic by means of an inductive operator. No logical characterization of feasible computation is known for unordered structures. We approach this question from two directions. On the one hand, we seek to accurately characterize the expre...
The Complexity of McKay's Canonical Labeling Algorithm
, 1996
"... We study the time complexity of McKay's algorithm to compute canonical forms and automorphism groups of graphs. The algorithm is based on a type of backtrack search, and it performs pruning by discovered automorphisms and by hashing partial information of vertex labelings. In practice, the algorithm ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
We study the time complexity of McKay's algorithm to compute canonical forms and automorphism groups of graphs. The algorithm is based on a type of backtrack search, and it performs pruning by discovered automorphisms and by hashing partial information of vertex labelings. In practice, the algorithm is implemented in the nauty package. We obtain colorings of Furer's graphs that allow the algorithm to compute their canonical forms in polynomial time. We then prove an exponential lower bound of the algorithm for connected 3regular graphs of colorclass size 4 using Furer's construction. We conducted experiments with nauty for these graphs. Our experimental results also indicate the same exponential lower bound.
FixedPoint Logics on Planar Graphs
 IN PROCEEDINGS OF THE 13TH IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE
, 1998
"... We study the expressive power of inflationary fixedpoint logic IFP and inflationary fixedpoint logic with counting IFP+C on planar graphs. We prove the following results: (1) IFP captures polynomial time on 3connected planar graphs, and IFP+C captures polynomial time on arbitrary planar graphs. ..."
Abstract

Cited by 34 (12 self)
 Add to MetaCart
We study the expressive power of inflationary fixedpoint logic IFP and inflationary fixedpoint logic with counting IFP+C on planar graphs. We prove the following results: (1) IFP captures polynomial time on 3connected planar graphs, and IFP+C captures polynomial time on arbitrary planar graphs. (2) Planar graphs can be characterized up to isomorphism in a logic with finitely many variables and counting. This answers a question of Immerman [7]. (3) The class of planar graphs is definable in IFP. This answers a question of Dawar and Grädel [16].