Results 1  10
of
14
Effective model theory: the number of models and their complexity
 MODELS AND COMPUTABILITY
, 1999
"... Effective model theory studies model theoretic notions with an eye towards issues of computability and effectiveness. We consider two possible starting points. If the basic objects are taken to be theories, then the appropriate effective version investigates decidable theories (the set of theorems i ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
Effective model theory studies model theoretic notions with an eye towards issues of computability and effectiveness. We consider two possible starting points. If the basic objects are taken to be theories, then the appropriate effective version investigates decidable theories (the set of theorems is computable) and decidable structures (ones with decidable theories). If the objects of initial interest are typical mathematical structures, then the starting point is computable structures. We present an introduction to both of these aspects of effective model theory organized roughly around the themes of the number and types of models of theories with particular attention to categoricity (as either a hypothesis or a conclusion) and the analysis of various computability issues in families of models.
Degree spectra of prime models
 J. Symbolic Logic
, 2004
"... 2.1 Notation from model theory................... 4 2.2 F ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
2.1 Notation from model theory................... 4 2.2 F
Computable trees, prime models, and relative decidability
 PROC. AMER. MATH. SOC
, 2005
"... We show that for every computable tree T with no dead ends and all paths computable, and every D>T ∅, there is a Dcomputable listing of the isolated paths of T. It follows that for every complete decidable theory T such that all the types of T are computable and every D>T ∅, there is a Ddecidable ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
We show that for every computable tree T with no dead ends and all paths computable, and every D>T ∅, there is a Dcomputable listing of the isolated paths of T. It follows that for every complete decidable theory T such that all the types of T are computable and every D>T ∅, there is a Ddecidable prime model of T. This result extends a theorem of Csima and yields a stronger version of the theorem, due independently to Slaman and Wehner, that there is a structure with presentations of every nonzero degree but no computable presentation.
The atomic model theorem and type omitting
 Trans. Amer. Math. Soc
"... We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than Π1 1 conservative over RCA0 and strictly weaker than all the combinatorial principles of Hirschfeldt and Shore [2007] that are not Π1 1 conservative over RCA0. A priority argument with Shore blocking shows that it is also Π1 1conservative over BΣ2. We also provide a theorem provable by a finite injury priority argument that is conservative over IΣ1 but implies IΣ2 over BΣ2, and a type omitting theorem that is equivalent to the principle that for every X there is a set that is hyperimmune relative to X. Finally, we give a version of the atomic model theorem that is equivalent to the principle that for every X there is a set that is not recursive in X, and is thus in a sense the weakest possible natural principle not true in the ωmodel consisting of the recursive sets.
The atomic model theorem
"... We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than Π1 1 conservative over RCA0 and strictly weaker than all the combinatorial principles of Hirschfeldt and Shore [2007] that are not Π1 1 conservative over RCA0. A priority argument with Shore blocking shows that it is also Π 1 1conservative over BΣ2. We also provide a theorem provable by a finite injury priority argument that is conservative over IΣ1 but implies IΣ2 over BΣ2, and a type omitting theorem that is equivalent to the principle that for every X there is a set that is hyperimmune relative to X. Finally, we give a version of the atomic model theorem that is equivalent to the principle that for every X there is a set that is not recursive in X, and is thus in a sense the weakest possible natural principle not true in the ωmodel consisting of the recursive sets.
Soare, Bounding homogeneous models
"... A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a ddecidable homogeneous model A, i.e., the elementary diagram D e (A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithm ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a ddecidable homogeneous model A, i.e., the elementary diagram D e (A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithmetic) is homogeneous bounding. We prove that in fact a degree is homogeneous bounding if and only if it is a PA degree. We do this by showing that there is a single CD theory T such that every homogeneous model of T has a PA degree. 1
Coordination through Inductive Meaning Negotiation
, 2002
"... This paper is on negotiation, precisely on the negotiation of meaning. We advance and discuss a formal paradigm of coordination and variants thereof, wherein meaning negotiation plays a major role in the process of convergence to a common agreement. Our model engage a kind of pairwise, modeltheoreti ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This paper is on negotiation, precisely on the negotiation of meaning. We advance and discuss a formal paradigm of coordination and variants thereof, wherein meaning negotiation plays a major role in the process of convergence to a common agreement. Our model engage a kind of pairwise, modeltheoretic coordination between knowledgebased agents, eventually able to communicate the complete & local meaning of their beliefs by expressions taken from the literals of a common firstorder language. We address the question of how the model provides the basis for a computational approach to the motivating problem of coordination by meaning negotiation. We exhibit a computable agent who coordinates with every agent taken from a uniformly computable class.
A computable ℵ0categorical structure whose theory computes true
"... The goal of this paper is to construct a computable ℵ0categorical structure whose first order theory is computably equivalent to the true first order theory of arithmetic. Recall that a structure is computable if its atomic open diagram, that is the set of all atomic statements and their negations ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The goal of this paper is to construct a computable ℵ0categorical structure whose first order theory is computably equivalent to the true first order theory of arithmetic. Recall that a structure is computable if its atomic open diagram, that is the set of all atomic statements and their negations true