Results 1 
6 of
6
The atomic model theorem and type omitting
 Trans. Amer. Math. Soc
"... We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than Π1 1 conservative over RCA0 and strictly weaker than all the combinatorial principles of Hirschfeldt and Shore [2007] that are not Π1 1 conservative over RCA0. A priority argument with Shore blocking shows that it is also Π1 1conservative over BΣ2. We also provide a theorem provable by a finite injury priority argument that is conservative over IΣ1 but implies IΣ2 over BΣ2, and a type omitting theorem that is equivalent to the principle that for every X there is a set that is hyperimmune relative to X. Finally, we give a version of the atomic model theorem that is equivalent to the principle that for every X there is a set that is not recursive in X, and is thus in a sense the weakest possible natural principle not true in the ωmodel consisting of the recursive sets.
Computable trees, prime models, and relative decidability
 PROC. AMER. MATH. SOC
, 2005
"... We show that for every computable tree T with no dead ends and all paths computable, and every D>T ∅, there is a Dcomputable listing of the isolated paths of T. It follows that for every complete decidable theory T such that all the types of T are computable and every D>T ∅, there is a Ddecidable ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
We show that for every computable tree T with no dead ends and all paths computable, and every D>T ∅, there is a Dcomputable listing of the isolated paths of T. It follows that for every complete decidable theory T such that all the types of T are computable and every D>T ∅, there is a Ddecidable prime model of T. This result extends a theorem of Csima and yields a stronger version of the theorem, due independently to Slaman and Wehner, that there is a structure with presentations of every nonzero degree but no computable presentation.
Turing degrees of the isomorphism types of algebraic objects
 the Journal of the London Mathematical Society
"... Abstract. The Turing degree spectrum of a countable structure A is the set of all Turing degrees of isomorphic copies of A. The Turing degree of the isomorphism type of A, if it exists, is the least Turing degree in its degree spectrum. We show there are countable fields, rings, and torsionfree abe ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. The Turing degree spectrum of a countable structure A is the set of all Turing degrees of isomorphic copies of A. The Turing degree of the isomorphism type of A, if it exists, is the least Turing degree in its degree spectrum. We show there are countable fields, rings, and torsionfree abelian groups of arbitrary rank, whose isomorphism types have arbitrary Turing degrees. We also show that there are structures in each of these classes whose isomorphism types do not have Turing degrees. 1.
The atomic model theorem
"... We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than Π1 1 conservative over RCA0 and strictly weaker than all the combinatorial principles of Hirschfeldt and Shore [2007] that are not Π1 1 conservative over RCA0. A priority argument with Shore blocking shows that it is also Π 1 1conservative over BΣ2. We also provide a theorem provable by a finite injury priority argument that is conservative over IΣ1 but implies IΣ2 over BΣ2, and a type omitting theorem that is equivalent to the principle that for every X there is a set that is hyperimmune relative to X. Finally, we give a version of the atomic model theorem that is equivalent to the principle that for every X there is a set that is not recursive in X, and is thus in a sense the weakest possible natural principle not true in the ωmodel consisting of the recursive sets.
Soare, Bounding homogeneous models
"... A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a ddecidable homogeneous model A, i.e., the elementary diagram D e (A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithm ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a ddecidable homogeneous model A, i.e., the elementary diagram D e (A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithmetic) is homogeneous bounding. We prove that in fact a degree is homogeneous bounding if and only if it is a PA degree. We do this by showing that there is a single CD theory T such that every homogeneous model of T has a PA degree. 1
INDUCTION, BOUNDING, WEAK COMBINATORIAL PRINCIPLES, AND THE HOMOGENEOUS MODEL THEOREM
, 2014
"... Abstract. Goncharov and Peretyat’kin independently gave necessary and sufficient conditions for when a set of types of a complete theory T is the type spectrum of some homogeneous model of T. Their result can be stated as a principle of second order arithmetic, which we call the Homogeneous Model Th ..."
Abstract
 Add to MetaCart
Abstract. Goncharov and Peretyat’kin independently gave necessary and sufficient conditions for when a set of types of a complete theory T is the type spectrum of some homogeneous model of T. Their result can be stated as a principle of second order arithmetic, which we call the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. We show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense. We do the same for an analogous result of Peretyat’kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.