Results 1 
4 of
4
The atomic model theorem and type omitting
 Trans. Amer. Math. Soc
"... We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than Π1 1 conservative over RCA0 and strictly weaker than all the combinatorial principles of Hirschfeldt and Shore [2007] that are not Π1 1 conservative over RCA0. A priority argument with Shore blocking shows that it is also Π1 1conservative over BΣ2. We also provide a theorem provable by a finite injury priority argument that is conservative over IΣ1 but implies IΣ2 over BΣ2, and a type omitting theorem that is equivalent to the principle that for every X there is a set that is hyperimmune relative to X. Finally, we give a version of the atomic model theorem that is equivalent to the principle that for every X there is a set that is not recursive in X, and is thus in a sense the weakest possible natural principle not true in the ωmodel consisting of the recursive sets.
The atomic model theorem
"... We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
We investigate the complexity of several classical model theoretic theorems about prime and atomic models and omitting types. Some are provable in RCA0, others are equivalent to ACA0. One, that every atomic theory has an atomic model, is not provable in RCA0 but is incomparable with WKL0, more than Π1 1 conservative over RCA0 and strictly weaker than all the combinatorial principles of Hirschfeldt and Shore [2007] that are not Π1 1 conservative over RCA0. A priority argument with Shore blocking shows that it is also Π 1 1conservative over BΣ2. We also provide a theorem provable by a finite injury priority argument that is conservative over IΣ1 but implies IΣ2 over BΣ2, and a type omitting theorem that is equivalent to the principle that for every X there is a set that is hyperimmune relative to X. Finally, we give a version of the atomic model theorem that is equivalent to the principle that for every X there is a set that is not recursive in X, and is thus in a sense the weakest possible natural principle not true in the ωmodel consisting of the recursive sets.
Soare, Bounding homogeneous models
"... A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a ddecidable homogeneous model A, i.e., the elementary diagram D e (A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithm ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a ddecidable homogeneous model A, i.e., the elementary diagram D e (A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithmetic) is homogeneous bounding. We prove that in fact a degree is homogeneous bounding if and only if it is a PA degree. We do this by showing that there is a single CD theory T such that every homogeneous model of T has a PA degree. 1
Separating the Degree . . .
, 2009
"... In computable model theory, mathematical structures are studied on the basis of their computability or computational complexity. The degree spectrum DgSp(A) of a countable structure A is one way to measure the computability of the structure. Given various classes of countable structures, such as lin ..."
Abstract
 Add to MetaCart
In computable model theory, mathematical structures are studied on the basis of their computability or computational complexity. The degree spectrum DgSp(A) of a countable structure A is one way to measure the computability of the structure. Given various classes of countable structures, such as linear orders, groups, and graphs, we separate two classes K1 and K2 in the following way: we say that K1 is distinguished from K2 with respect to degree spectrum if there is an A ∈ K1 such that for all B ∈ K2, DgSp(A) ̸ = DgSp(B). In the dissertation, we will investigate this separation idea. We look at specific choices for K1 and K2—for example, we show that linear orders are distinguished from finitecomponents graphs, equivalence structures, rank1 torsionfree abelian groups, and daisy graphs with respect to degree spectrum. Out of these proofs, there comes a general pattern for the kinds of structures from which linear orders are distinguished with respect to degree spectrum. In the future, we may also replace linear orders with possibly