Results 1 
9 of
9
Semantic Domains
, 1990
"... this report started working on denotational semantics in collaboration with Christopher Strachey. In order to fix some mathematical precision, he took over some definitions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a simple type theory of highertype fu ..."
Abstract

Cited by 146 (3 self)
 Add to MetaCart
this report started working on denotational semantics in collaboration with Christopher Strachey. In order to fix some mathematical precision, he took over some definitions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a simple type theory of highertype functionals. It was only after giving an abstract characterization of the spaces obtained (through the construction of bases) that he realized that recursive definitions of types could be accommodated as welland that the recursive definitions could incorporate function spaces as well. Though it was not the original intention to find semantics of the socalled untyped calculus, such a semantics emerged along with many ways of interpreting a very large variety of languages. A large number of people have made essential contributions to the subsequent developments, and they have shown in particular that domain theory is not one monolithic theory, but that there are several different kinds of constructions giving classes of domains appropriate for different mixtures of constructs. The story is, in fact, far from finished even today. In this report we will only be able to touch on a few of the possibilities, but we give pointers to the literature. Also, we have attempted to explain the foundations in an elementary wayavoiding heavy prerequisites (such as category theory) but still maintaining some level of abstractionwith the hope that such an introduction will aid the reader in going further into the theory. The chapter is divided into seven sections. In the second section we introduce a simple class of ordered structures and discuss the idea of fixed points of continuous functions as meanings for recursive programs. In the third section we discuss computable functions and...
Intersection Type Assignment Systems
 THEORETICAL COMPUTER SCIENCE
, 1995
"... This paper gives an overview of intersection type assignment for the Lambda Calculus, as well as compare in detail variants that have been defined in the past. It presents the essential intersection type assignment system, that will prove to be as powerful as the wellknown BCDsystem. It is essenti ..."
Abstract

Cited by 61 (33 self)
 Add to MetaCart
This paper gives an overview of intersection type assignment for the Lambda Calculus, as well as compare in detail variants that have been defined in the past. It presents the essential intersection type assignment system, that will prove to be as powerful as the wellknown BCDsystem. It is essential in the following sense: it is an almost syntax directed system that satisfies all major properties of the BCDsystem, and the types used are the representatives of equivalence classes of types in the BCDsystem. The set of typeable terms can be characterized in the same way, the system is complete with respect to the simple type semantics, and it has the principal type property.
Strict Intersection Types for the Lambda Calculus
, 2010
"... This paper will show the usefulness and elegance of strict intersection types for the Lambda Calculus; these are strict in the sense that they are the representatives of equivalence classes of types in the BCDsystem [15]. We will focus on the essential intersection type assignment; this system is a ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
This paper will show the usefulness and elegance of strict intersection types for the Lambda Calculus; these are strict in the sense that they are the representatives of equivalence classes of types in the BCDsystem [15]. We will focus on the essential intersection type assignment; this system is almost syntax directed, and we will show that all major properties hold that are known to hold for other intersection systems, like the approximation theorem, the characterisation of (head/strong) normalisation, completeness of type assignment using filter semantics, strong normalisation for cutelimination and the principal pair property. In part, the proofs for these properties are new; we will briefly compare the essential system with other existing systems.
Towards Lambda Calculus OrderIncompleteness
 Workshop on Böhm theorem: applications to Computer Science Theory (BOTH 2001) Electronics Notes in Theoretical Computer Science
"... After Scott, mathematical models of the typefree lambda calculus are constructed by order theoretic methods and classified into semantics according to the nature of their representable functions. Selinger [47] asked if there is a lambda theory that is not induced by any nontrivially partially orde ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
After Scott, mathematical models of the typefree lambda calculus are constructed by order theoretic methods and classified into semantics according to the nature of their representable functions. Selinger [47] asked if there is a lambda theory that is not induced by any nontrivially partially ordered model (orderincompleteness problem). In terms of Alexandroff topology (the strongest topology whose specialization order is the order of the considered model) the problem of order incompleteness can be also characterized as follows: a lambda theory T is orderincomplete if, and only if, every partially ordered model of T is partitioned by the Alexandroff topology in an infinite number of connected components (= minimal upper and lower sets), each one containing exactly one element of the model. Towards an answer to the orderincompleteness problem, we give a topological proof of the following result: there exists a lambda theory whose partially ordered models are partitioned by the Alexandroff topology in an infinite number of connected components, each one containing at most one term denotation. This result implies the incompleteness of every semantics of lambda calculus given in terms of partially ordered models whose Alexandroff topology has a finite number of connected components (e.g. the Alexandroff topology of the models of the continuous, stable and strongly stable semantics is connected).
Applying Universal Algebra to Lambda Calculus
, 2007
"... The aim of this paper is double. From one side we survey the knowledge we have acquired these last ten years about the lattice of all λtheories ( = equational extensions of untyped λcalculus) and the models of lambda calculus via universal algebra. This includes positive or negative answers to se ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
The aim of this paper is double. From one side we survey the knowledge we have acquired these last ten years about the lattice of all λtheories ( = equational extensions of untyped λcalculus) and the models of lambda calculus via universal algebra. This includes positive or negative answers to several questions raised in these years as well as several independent results, the state of the art about the longstanding open questions concerning the representability of λtheories as theories of models, and 26 open problems. On the other side, against the common belief, we show that lambda calculus and combinatory logic satisfy interesting algebraic properties. In fact the Stone representation theorem for Boolean algebras can be generalized to combinatory algebras and λabstraction algebras. In every combinatory and λabstraction algebra there is a Boolean algebra of central elements (playing the role of idempotent elements in rings). Central elements are used to represent any combinatory and λabstraction algebra as a weak Boolean product of directly indecomposable algebras (i.e., algebras which cannot be decomposed as the Cartesian product of two other nontrivial algebras). Central elements are also used to provide applications of the representation theorem to lambda calculus. We show that the indecomposable semantics (i.e., the semantics of lambda calculus given in terms of models of lambda calculus, which are directly indecomposable as combinatory algebras) includes the continuous, stable and strongly stable semantics, and the term models of all semisensible λtheories. In one of the main results of the paper we show that the indecomposable semantics is equationally incomplete, and this incompleteness is as wide as possible.
Combinatory Models and Symbolic Computation
 Lecture Notes in Computer Science , Springer Verlag 721
, 1992
"... Weintroduce an algebraic model of computation which is especially useful for the description of computations in analysis. On one level the model allows the representation of algebraic computation and on an other level approximate computation is represented. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Weintroduce an algebraic model of computation which is especially useful for the description of computations in analysis. On one level the model allows the representation of algebraic computation and on an other level approximate computation is represented.
Types for Trees
 In PROCOMET'98 (Shelter Island
, 1998
"... We introduce a type assignment system which is parametric with respect to five families of trees obtained by evaluating terms (Bohm trees, LevyLongo trees, ...). Then we prove, in an (almost) uniform way, that each type assignment system fully describes the observational equivalences induced by th ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We introduce a type assignment system which is parametric with respect to five families of trees obtained by evaluating terms (Bohm trees, LevyLongo trees, ...). Then we prove, in an (almost) uniform way, that each type assignment system fully describes the observational equivalences induced by the corresponding tree representation of terms. More precisely, for each family of trees two terms have the same tree if and only if they get assigned the same types in the corresponding type assignment system. Keywords Bohm trees, approximants, intersection types. 1 INTRODUCTION A theory of functions like the calculus, which provides a foundation for the functional programming paradigm in computer science, can be seen essentially as a theory of "programs". This point of view leads naturally to the intuitive idea that the meaning of a term (program) is represented by the amount of "meaningful information " we can extract from the term by "running it". The formalization of "the information"...
Contents
, 2005
"... A summary of the motivation and theory behind abstract interpretation, including the accumulating semantics, Galois connections and widening. A complete demonstration of the use of abstract interpretation to define a safe and optimal sign analysis in the context of a simple imperative language is pr ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A summary of the motivation and theory behind abstract interpretation, including the accumulating semantics, Galois connections and widening. A complete demonstration of the use of abstract interpretation to define a safe and optimal sign analysis in the context of a simple imperative language is presented. In addition, a example of widening is described to improve the termination properties of an interval analysis of the same language. Keywords: • Semantics • Program analysis