Results 1 
5 of
5
Small semiweakly universal Turing machines
 Machines, Computations and Universality (MCU), volume 4664 of LNCS
, 2007
"... Abstract. We present three small universal Turing machines that have 3 states and 7 symbols, 4 states and 5 symbols, and 2 states and 13 symbols, respectively. These machines are semiweakly universal which means that on one side of the input they have an infinitely repeated word, and on the other s ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
Abstract. We present three small universal Turing machines that have 3 states and 7 symbols, 4 states and 5 symbols, and 2 states and 13 symbols, respectively. These machines are semiweakly universal which means that on one side of the input they have an infinitely repeated word, and on the other side there is the usual infinitely repeated blank symbol. This work can be regarded as a continuation of early work by Watanabe on semiweak machines. One of our machines has only 17 transition rules, making it the smallest known semiweakly universal Turing machine. Interestingly, two of our machines are symmetric with Watanabeâ€™s 7state and 3symbol, and 5state and 4symbol machines, even though we use a different simulation technique. 1.
Small weakly universal Turing machines
"... Abstract. We give small universal Turing machines with statesymbol pairs of (6, 2), (3,3) and (2,4). These machines are weakly universal, which means that they have an infinitely repeated word to the left of their input and another to the right. They simulate Rule 110 and are currently the smallest ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
Abstract. We give small universal Turing machines with statesymbol pairs of (6, 2), (3,3) and (2,4). These machines are weakly universal, which means that they have an infinitely repeated word to the left of their input and another to the right. They simulate Rule 110 and are currently the smallest known weakly universal Turing machines. Despite their small size these machines are efficient polynomial time simulators of Turing machines. 1
The complexity of small universal Turing machines: a survey
, 2007
"... We survey some work concerned with small universal Turing machines, cellular automata, tag systems, and other simple models of computation. For example it has been an open question for some time as to whether the smallest known universal Turing machines of Minsky, Rogozhin, Baiocchi and Kudlek are e ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We survey some work concerned with small universal Turing machines, cellular automata, tag systems, and other simple models of computation. For example it has been an open question for some time as to whether the smallest known universal Turing machines of Minsky, Rogozhin, Baiocchi and Kudlek are efficient (polynomial time) simulators of Turing machines. These are some of the most intuitively simple computational devices and previously the best known simulations were exponentially slow. We discuss recent work that shows that these machines are indeed efficient simulators. As a related result we also find that Rule 110, a wellknown elementary cellular automaton, is also efficiently universal. We also mention some old and new universal programsize results, including new small universal Turing machines and new weakly, and semiweakly, universal Turing machines. We then discuss some ideas for future work arising out of these, and other, results.
Simplicity via Provability for Universal Prefixfree Turing Machines
, 2008
"... Universality is one of the most important ideas in computability theory. There are various criteria of simplicity for universal Turing machines. Probably the most popular one is to count the number of states/symbols. This criterion is more complex than it may appear at a first glance. In this note w ..."
Abstract
 Add to MetaCart
Universality is one of the most important ideas in computability theory. There are various criteria of simplicity for universal Turing machines. Probably the most popular one is to count the number of states/symbols. This criterion is more complex than it may appear at a first glance. In this note we review recent results in Algorithmic Information Theory and propose three new criteria of simplicity for universal prefixfree Turing machines. These criteria refer to the possibility of proving various natural properties of such a machine (its universality, for example) in a formal theory, PA or ZFC. In all cases some, but not all, machines are simple.