Results 1  10
of
415
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 795 (12 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Bundle adjustment – a modern synthesis
 Vision Algorithms: Theory and Practice, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 388 (10 self)
 Add to MetaCart
This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than restricting attention to traditional nonlinear least squares.
The University of Florida sparse matrix collection
 NA DIGEST
, 1997
"... The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural enginee ..."
Abstract

Cited by 302 (15 self)
 Add to MetaCart
The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and other discretizations) and those that typically do not have such geometry (optimization, circuit simulation, networks and graphs, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, and power networks). The collection meets a vital need that artificiallygenerated matrices cannot meet, and is widely used by the sparse matrix algorithms community for the development and performance evaluation of sparse matrix algorithms. The collection includes software for accessing and managing the collection, from MATLAB, Fortran, and C.
A column approximate minimum degree ordering algorithm
, 2000
"... Sparse Gaussian elimination with partial pivoting computes the factorization PAQ = LU of a sparse matrix A, where the row ordering P is selected during factorization using standard partial pivoting with row interchanges. The goal is to select a column preordering, Q, based solely on the nonzero patt ..."
Abstract

Cited by 253 (50 self)
 Add to MetaCart
Sparse Gaussian elimination with partial pivoting computes the factorization PAQ = LU of a sparse matrix A, where the row ordering P is selected during factorization using standard partial pivoting with row interchanges. The goal is to select a column preordering, Q, based solely on the nonzero pattern of A such that the factorization remains as sparse as possible, regardless of the subsequent choice of P. The choice of Q can have a dramatic impact on the number of nonzeros in L and U. One scheme for determining a good column ordering for A is to compute a symmetric ordering that reduces fillin in the Cholesky factorization of ATA. This approach, which requires the sparsity structure of ATA to be computed, can be expensive both in
A New Efficient Algorithm for Computing Gröbner Bases (F4)
 IN: ISSAC ’02: PROCEEDINGS OF THE 2002 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION
, 2002
"... This paper introduces a new efficient algorithm for computing Gröbner bases. To avoid as much as possible intermediate computation, the algorithm computes successive truncated Gröbner bases and it replaces the classical polynomial reduction found in the Buchberger algorithm by the simultaneous reduc ..."
Abstract

Cited by 251 (53 self)
 Add to MetaCart
This paper introduces a new efficient algorithm for computing Gröbner bases. To avoid as much as possible intermediate computation, the algorithm computes successive truncated Gröbner bases and it replaces the classical polynomial reduction found in the Buchberger algorithm by the simultaneous reduction of several polynomials. This powerful reduction mechanism is achieved by means of a symbolic precomputation and by extensive use of sparse linear algebra methods. Current techniques in linear algebra used in Computer Algebra are reviewed together with other methods coming from the numerical field. Some previously untractable problems (Cyclic 9) are presented as well as an empirical comparison of a first implementation of this algorithm with other well known programs. This comparison pays careful attention to methodology issues. All the benchmarks and CPU times used in this paper are frequently updated and available on a Web page. Even though the new algorithm does not improve the worst case complexity it is several times faster than previous implementations both for integers and modulo computations.
Selecting the Right Interestingness Measure for Association Patterns
, 2002
"... Many techniques for association rule mining and feature selection require a suitable metric to capture the dependencies among variables in a data set. For example, metrics such as support, confidence, lift, correlation, and collective strength are often used to determine the interestinghess of assoc ..."
Abstract

Cited by 187 (9 self)
 Add to MetaCart
Many techniques for association rule mining and feature selection require a suitable metric to capture the dependencies among variables in a data set. For example, metrics such as support, confidence, lift, correlation, and collective strength are often used to determine the interestinghess of association patterns. However, many such measures provide conflicting information about the interestinghess of a pattern, and the best metric to use for a given application domain is rarely known. In this paper, we present an overview of various measures proposed in the statistics, machine learning and data mining literature. We describe several key properties one should examine in order to select the right measure for a given application domain. A comparative study of these properties is made using twenty one of the existing measures. We show that each measure has different properties which make them useful for some application domains, but not for others. We also present two scenarios in which most of the existing measures agree with each other, namely, supportbased pruning and table standardization. Finally, we present an algorithm to select a small set of tables such that an expert can select a desirable measure by looking at just this small set of tables.
An interiorpoint method for largescale l1regularized logistic regression
 Journal of Machine Learning Research
, 2007
"... Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand ..."
Abstract

Cited by 156 (5 self)
 Add to MetaCart
Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand or so features and examples can be solved in seconds on a PC; medium sized problems, with tens of thousands of features and examples, can be solved in tens of seconds (assuming some sparsity in the data). A variation on the basic method, that uses a preconditioned conjugate gradient method to compute the search step, can solve very large problems, with a million features and examples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC. Using warmstart techniques, a good approximation of the entire regularization path can be computed much more efficiently than by solving a family of problems independently.
A sparse approximate inverse preconditioner for nonsymmetric linear systems
 SIAM J. SCI. COMPUT
, 1998
"... This paper is concerned with a new approach to preconditioning for large, sparse linear systems. A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed, and the resulting factorized sparse approximate inverse is used as an explicit preconditioner f ..."
Abstract

Cited by 155 (22 self)
 Add to MetaCart
This paper is concerned with a new approach to preconditioning for large, sparse linear systems. A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed, and the resulting factorized sparse approximate inverse is used as an explicit preconditioner for conjugate gradient–type methods. Some theoretical properties of the preconditioner are discussed, and numerical experiments on test matrices from the Harwell–Boeing collection and from Tim Davis’s collection are presented. Our results indicate that the new preconditioner is cheaper to construct than other approximate inverse preconditioners. Furthermore, the new technique insures convergence rates of the preconditioned iteration which are comparable with those obtained with standard implicit preconditioners.
METIS  Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 2.0
, 1995
"... this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used ..."
Abstract

Cited by 122 (5 self)
 Add to MetaCart
this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used by METIS. Section 6 describes the standalone library that implements the various algorithms implemented in METIS. Section 7 describes the system requirements for the METIS package. Appendix A describes and compares various graph partitioning algorithms that are extensively used.