Results 1  10
of
307
Boosting combinatorial search through randomization
, 1998
"... Unpredictability in the running time of complete search procedures can often be explained by the phenomenon of “heavytailed cost distributions”, meaning that at any time during the experiment there is a nonnegligible probability of hitting a problem that requires exponentially more time to solve t ..."
Abstract

Cited by 315 (35 self)
 Add to MetaCart
Unpredictability in the running time of complete search procedures can often be explained by the phenomenon of “heavytailed cost distributions”, meaning that at any time during the experiment there is a nonnegligible probability of hitting a problem that requires exponentially more time to solve than any that has been encountered before (Gomes et al. 1998a). We present a general method for introducing controlled randomization into complete search algorithms. The “boosted ” search methods provably eliminate heavytails to the right of the median. Furthermore, they can take advantage of heavytails to the left of the median (that is, a nonnegligible chance of very short runs) to dramatically shorten the solution time. We demonstrate speedups of several orders of magnitude for stateoftheart complete search procedures running on hard, realworld problems.
HeavyTailed Phenomena in Satisfiability and Constraint Satisfaction Problems
 J. of Autom. Reasoning
, 2000
"... Abstract. We study the runtime distributions of backtrack procedures for propositional satisfiability and constraint satisfaction. Such procedures often exhibit a large variability in performance. Our study reveals some intriguing properties of such distributions: They are often characterized by ver ..."
Abstract

Cited by 148 (27 self)
 Add to MetaCart
Abstract. We study the runtime distributions of backtrack procedures for propositional satisfiability and constraint satisfaction. Such procedures often exhibit a large variability in performance. Our study reveals some intriguing properties of such distributions: They are often characterized by very long tails or “heavy tails”. We will show that these distributions are best characterized by a general class of distributions that can have infinite moments (i.e., an infinite mean, variance, etc.). Such nonstandard distributions have recently been observed in areas as diverse as economics, statistical physics, and geophysics. They are closely related to fractal phenomena, whose study was introduced by Mandelbrot. We also show how random restarts can effectively eliminate heavytailed behavior. Furthermore, for harder problem instances, we observe long tails on the lefthand side of the distribution, which is indicative of a nonnegligible fraction of relatively short, successful runs. A rapid restart strategy eliminates heavytailed behavior and takes advantage of short runs, significantly reducing expected solution time. We demonstrate speedups of up to two orders of magnitude on SAT and CSP encodings of hard problems in planning, scheduling, and circuit synthesis. Key words: satisfiability, constraint satisfaction, heavy tails, backtracking 1.
Iterated random functions
 SIAM Review
, 1999
"... Abstract. Iterated random functions are used to draw pictures or simulate large Ising models, among other applications. They offer a method for studying the steady state distribution of a Markov chain, and give useful bounds on rates of convergence in a variety of examples. The present paper surveys ..."
Abstract

Cited by 131 (1 self)
 Add to MetaCart
Abstract. Iterated random functions are used to draw pictures or simulate large Ising models, among other applications. They offer a method for studying the steady state distribution of a Markov chain, and give useful bounds on rates of convergence in a variety of examples. The present paper surveys the field and presents some new examples. There is a simple unifying idea: the iterates of random Lipschitz functions converge if the functions are contracting on the average. 1. Introduction. The
Multiresolution markov models for signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coheren ..."
Abstract

Cited by 122 (18 self)
 Add to MetaCart
This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework. A second goal is to describe how this topic fits into the even larger field of MR methods and concepts–in particular making ties to topics such as wavelets and multigrid methods. A third is to provide several alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number of other fields. The principle focus of our presentation is the class of MR Markov processes defined on pyramidally organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit and their expressive power and broad applicability. We show how a variety of methods and models relate to this framework including models for selfsimilar and 1/f processes. We also illustrate how these methods have been used in practice. We discuss the construction of MR models on trees and show how questions that arise in this context make contact with wavelets, state space modeling of time series, system and parameter identification, and hidden
A JumpDiffusion Model for Option Pricing
 Management Science
, 2002
"... Brownian motion and normal distribution have been widely used in the Black–Scholes optionpricing framework to model the return of assets. However, two puzzles emerge from many empirical investigations: the leptokurtic feature that the return distribution of assets may have a higher peak and two (as ..."
Abstract

Cited by 114 (3 self)
 Add to MetaCart
Brownian motion and normal distribution have been widely used in the Black–Scholes optionpricing framework to model the return of assets. However, two puzzles emerge from many empirical investigations: the leptokurtic feature that the return distribution of assets may have a higher peak and two (asymmetric) heavier tails than those of the normal distribution, and an empirical phenomenon called “volatility smile ” in option markets. To incorporate both of them and to strike a balance between reality and tractability, this paper proposes, for the purpose of option pricing, a double exponential jumpdiffusion model. In particular, the model is simple enough to produce analytical solutions for a variety of optionpricing problems, including call and put options, interest rate derivatives, and pathdependent options. Equilibrium analysis and a psychological interpretation of the model are also presented.
Random Cascades on Wavelet Trees and Their Use in Analyzing and Modeling Natural Images
 Applied and Computational Harmonic Analysis
, 2001
"... in signal and image processing, including image denoising, coding, and superresolution. # 2001 Academic Press 1. INTRODUCTION Stochastic models of natural images underlie a variety of applications in image processing and lowlevel computer vision, including image coding, denoising and 1 MW supp ..."
Abstract

Cited by 88 (16 self)
 Add to MetaCart
in signal and image processing, including image denoising, coding, and superresolution. # 2001 Academic Press 1. INTRODUCTION Stochastic models of natural images underlie a variety of applications in image processing and lowlevel computer vision, including image coding, denoising and 1 MW supported by NSERC 1967 fellowship; AW and MW by AFOSR Grant F496209810349 and ONR Grant N0001491J1004. Address correspondence to MW. 2 ES supported by NSF Career Grant MIP9796040 and an Alfred P. Sloan fellowship. 89 10635203/01 $35.00 Copyright # 2001 by Academic Press All rights of reproduction in any form reserved. 90 WAINWRIGHT, SIMONCELLI, AND WILLSKY restoration, interpolation and synthesis. Accordingly, the past decade has witnessed an increasing amount of research devoted to developing stochastic models of images (e.g., [19, 38, 45, 48, 55]). Simultaneously, wavel
Complexity and robustness
 Proceedings of the National Academy of Sciences 99(Suppl
, 2002
"... Highly Optimized Tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes 1) highly structured, nongeneric, selfdissimilar internal configurations and 2) robust, yet ..."
Abstract

Cited by 72 (5 self)
 Add to MetaCart
Highly Optimized Tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes 1) highly structured, nongeneric, selfdissimilar internal configurations and 2) robust, yet fragile external behavior. HOT claims these are the most important features of complexity and are not accidents of evolution or artifices of engineering design, but are inevitably intertwined and mutually reinforcing. In the spirit of this collection, our paper contrasts HOT with alternative perspectives on complexity, drawing on both real world examples and also model systems, particularly those from SelfOrganized Criticality (SOC).
SelfSimilar Network Traffic: An Overview
, 1999
"... INTRODUCTION 1.1.1 Background Since the seminal study of Leland, Taqqu, Willinger and Wilson [41] which set the groundwork for considering selfsimilarity an important notion in the understanding of network traffic including the modeling and analysis of network performance, an explosion of work ha ..."
Abstract

Cited by 72 (5 self)
 Add to MetaCart
INTRODUCTION 1.1.1 Background Since the seminal study of Leland, Taqqu, Willinger and Wilson [41] which set the groundwork for considering selfsimilarity an important notion in the understanding of network traffic including the modeling and analysis of network performance, an explosion of work has ensued investigating the multifaceted nature of this phenomenon. 1 The long held paradigm in the communication and performance communities has been that voice traffic and, by extension, data traffic are adequately described by certain Markovian models (e.g., Poisson) which are amenable to accurate analysis and efficient control. The first property stems from the welldeveloped field of Markovian analysis which allows tight equilibrium bounds on performance variables such as the waiting time in various queueing systems to be found. This also 1 For a nontechnical account of the discovery of the selfsimilar nature of network traffic, including parallel effort
Longlasting transient conditions in simulations with heavytailed workloads
, 1997
"... Recent evidence suggests that some characteristics of computer and telecommunications systems may be well described using heavy tailed distributions — distributions whose tail declines like a power law, which means that the probability of extremely large observations is nonnegligible. For example, ..."
Abstract

Cited by 67 (5 self)
 Add to MetaCart
Recent evidence suggests that some characteristics of computer and telecommunications systems may be well described using heavy tailed distributions — distributions whose tail declines like a power law, which means that the probability of extremely large observations is nonnegligible. For example, such distributions have been found to describe the lengths of bursts in network traffic and the sizes of files in some systems. As a result, system designers are increasingly interested in employing heavytailed distributions in simulation workloads. Unfortunately, these distributions have properties considerably different from the kinds of distributions more commonly used in simulations; these properties make simulation stability hard to achieve. In this paper we explore the difficulty of achieving stability in such simulations, using tools from the theory of stable distributions. We show that such simulations exhibit two characteristics related to stability: slow convergence to steady state, and high variability at steady state. As a result, we argue that such simulations must be treated as effectively always in a transient condition. One way to address this problem is to introduce the notion of time scale as a parameter of the simulation, and we discuss methods for simulating such systems while explicitly incorporating time scale as a parameter. 1
On The Distribution And Asymptotic Results For Exponential Functionals Of Lévy Processes
, 1997
"... . The aim of this note is to study the distribution and the asymptotic behavior of the exponential functional A t := R t 0 e s ds, where ( s ; s 0) denotes a L'evy process. When A1 ! 1, we show that in most cases, the law of A1 is a solution of an integrodifferential equation ; moreover, this ..."
Abstract

Cited by 65 (8 self)
 Add to MetaCart
. The aim of this note is to study the distribution and the asymptotic behavior of the exponential functional A t := R t 0 e s ds, where ( s ; s 0) denotes a L'evy process. When A1 ! 1, we show that in most cases, the law of A1 is a solution of an integrodifferential equation ; moreover, this law is characterized by its integral moments. When the process is asymptotically ffstable, we prove that t \Gamma1=ff log A t converges in law, as t !1, to the supremum of an ffstable L'evy process ; in particular, if E [ 1 ] ? 0, then ff = 1 and (1=t) log A t converges almost surely to E [ 1 ]. Eventually, we use Girsanov's transform to give the explicit behavior of E \Theta (a +A t ()) \Gamma1 as t ! 1, where a is a constant, and deduce from this the rate of decay of the tail of the distribution of the maximum of a diffusion process in a random L'evy environment. 1. Introduction We first describe three different sources of interest for exponential functionals of Brownian mot...