Results 1  10
of
12
Hypercomputation: computing more than the Turing machine
, 2002
"... In this report I provide an introduction to the burgeoning field of hypercomputation – the study of machines that can compute more than Turing machines. I take an extensive survey of many of the key concepts in the field, tying together the disparate ideas and presenting them in a structure which al ..."
Abstract

Cited by 31 (5 self)
 Add to MetaCart
In this report I provide an introduction to the burgeoning field of hypercomputation – the study of machines that can compute more than Turing machines. I take an extensive survey of many of the key concepts in the field, tying together the disparate ideas and presenting them in a structure which allows comparisons of the many approaches and results. To this I add several new results and draw out some interesting consequences of hypercomputation for several different disciplines. I begin with a succinct introduction to the classical theory of computation and its place amongst some of the negative results of the 20 th Century. I then explain how the ChurchTuring Thesis is commonly misunderstood and present new theses which better describe the possible limits on computability. Following this, I introduce ten different hypermachines (including three of my own) and discuss in some depth the manners in which they attain their power and the physical plausibility of each method. I then compare the powers of the different models using a device from recursion theory. Finally, I examine the implications of hypercomputation to mathematics, physics, computer science and philosophy. Perhaps the most important of these implications is that the negative mathematical results of Gödel, Turing and Chaitin are each dependent upon the nature of physics. This both weakens these results and provides strong links between mathematics and physics. I conclude that hypercomputation is of serious academic interest within many disciplines, opening new possibilities that were previously ignored because of long held misconceptions about the limits of computation.
Accelerated Turing Machines
 Minds and Machines
, 2002
"... Abstract. Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of π contains n consecutive 7s, for any n; solve the Turingmachine halti ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
Abstract. Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of π contains n consecutive 7s, for any n; solve the Turingmachine halting problem; and decide the predicate calculus. Are accelerating Turing machines, then, logically impossible devices? I argue that they are not. There are implications concerning the nature of effective procedures and the theoretical limits of computability. Contrary to a recent paper by Bringsjord, Bello and Ferrucci, however, the concept of an accelerating Turing machine cannot be used to shove up Searle’s Chinese room argument.
RELATIVISTIC COMPUTERS AND THE TURING Barrier
, 2006
"... We examine the current status of the physical version of the ChurchTuring Thesis (PhCT for short) in view of latest developments in spacetime theory. This also amounts to investigating the status of hypercomputation in view of latest results on spacetime. We agree with Deutsch et al [17] that PhCT ..."
Abstract

Cited by 22 (10 self)
 Add to MetaCart
We examine the current status of the physical version of the ChurchTuring Thesis (PhCT for short) in view of latest developments in spacetime theory. This also amounts to investigating the status of hypercomputation in view of latest results on spacetime. We agree with Deutsch et al [17] that PhCT is not only a conjecture of mathematics but rather a conjecture of a combination of theoretical physics, mathematics and, in some sense, cosmology. Since the idea of computability is intimately connected with the nature of Time, relevance of spacetime theory seems to be unquestionable. We will see that recent developments in spacetime theory show that temporal developments may exhibit features that traditionally seemed impossible or absurd. We will see that recent results point in the direction that the possibility of artificial systems computing nonTuring computable functions may be consistent with spacetime theory. All these trigger new open questions and new research directions for spacetime theory, cosmology, and computability.
Physical Hypercomputation and the Church–Turing Thesis
, 2003
"... We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a function that is not Turing computable. Finally, we argue that the existence of the device does not refute the Church–Turing thesis, but nevertheless may be a counterexample to Gandy’s thesis.
Quantum SpeedUp of Computations
 Philosophy of Science
, 2002
"... ChurchTuring Thesis as saying something about the scope and limitations of physical computing machines. Although this was not the intention of Church or Turing, the Physical Church Turing thesis is interesting in its own right. Consider, for example, Wolfram’s formulation: One can expect in fact th ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
ChurchTuring Thesis as saying something about the scope and limitations of physical computing machines. Although this was not the intention of Church or Turing, the Physical Church Turing thesis is interesting in its own right. Consider, for example, Wolfram’s formulation: One can expect in fact that universal computers are as powerful in their computational capabilities as any physically realizable system can be, that they can simulate any physical system...Nophysically implementable procedure could then shortcut a computationally irreducible process. (Wolfram 1985) Wolfram’s thesis consists of two parts: (a) Any physical system can be simulated (to any degree of approximation) by a universal Turing machine (b) Complexity bounds on Turing machine simulations have physical significance. For example, suppose that the computation of the minimum energy of some system of n particles takes at least exponentially (in n) many steps. Then the relaxation time of the actual physical system to its minimum energy state will also take exponential time. An even more extreme formulation of (more or less) the same thesis is due to Aharonov (1998): A probabilistic Turing machine can simulate any reasonable physical device in polynomial cost. She calls this The Modern Church Thesis. Aharonov refers here to probabilistic Turing machines that use random numbers in addition to the usual deterministic table of steps. It seems that such machines are capable to perform certain tasks faster than fully deterministic machines. The most famous randomized algorithm of that kind concerns the decision whether a given natural number is prime. A probabilistic algorithm that decides primality in a number of
General relativistic hypercomputing and foundation of mathematics
"... Abstract. Looking at very recent developments in spacetime theory, we can wonder whether these results exhibit features of hypercomputation that traditionally seemed impossible or absurd. Namely, we describe a physical device in relativistic spacetime which can compute a nonTuring computable task, ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. Looking at very recent developments in spacetime theory, we can wonder whether these results exhibit features of hypercomputation that traditionally seemed impossible or absurd. Namely, we describe a physical device in relativistic spacetime which can compute a nonTuring computable task, e.g. which can decide the halting problem of Turing machines or decide whether ZF set theory is consistent (more precisely, can decide the theorems of ZF). Starting from this, we will discuss the impact of recent breakthrough results of relativity theory, black hole physics and cosmology to well established foundational issues of computability theory as well as to logic. We find that the unexpected, revolutionary results in the mentioned branches of science force us to reconsider the status of the physical Church Thesis and to consider it as being seriously challenged. We will outline the consequences of all this for the foundation of mathematics (e.g. to Hilbert’s programme). Observational, empirical evidence will be quoted to show that the statements above do not require any assumption of some physical universe outside of our own one: in our specific physical universe there seem to exist regions of spacetime supporting potential nonTuring computations. Additionally, new “engineering ” ideas will be outlined for solving the socalled blueshift problem of GRcomputing. Connections with related talks at the Physics and Computation meeting, e.g. those of Jerome DurandLose, Mark Hogarth and Martin Ziegler, will be indicated. 1
Computability at the Planck Scale
 grqc/0412076, ILLC Publications X200501
"... We consider the issue of computability at the most fundamental level of physical reality: the Planck scale. To this aim, we consider the theoretical model of a quantum computer on a non commutative space background, which is a computational model for quantum gravity. In this domain, all computable f ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
We consider the issue of computability at the most fundamental level of physical reality: the Planck scale. To this aim, we consider the theoretical model of a quantum computer on a non commutative space background, which is a computational model for quantum gravity. In this domain, all computable functions are the laws of physics in their most primordial form, and non computable mathematics finds no room in the physical world. Moreover, we show that a theorem that classically was considered true but non computable, at the Planck scale becomes computable but non decidable. This fact is due to the change of logic for observers in a quantumcomputing universe: from standard quantum logic and classical logic, to paraconsistent logic. A quantum computer [24] can simulate [13] perfectly and efficiently a quantum mechanical system. Precision is due to discreteness from both sides: qubits
Quantum Hypercomputation—Hype or Computation?
, 2007
"... A recent attempt to compute a (recursion–theoretic) non–computable function using the quantum adiabatic algorithm is criticized and found wanting. Quantum algorithms may outperform classical algorithms in some cases, but so far they retain the classical (recursion–theoretic) notion of computability. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A recent attempt to compute a (recursion–theoretic) non–computable function using the quantum adiabatic algorithm is criticized and found wanting. Quantum algorithms may outperform classical algorithms in some cases, but so far they retain the classical (recursion–theoretic) notion of computability. A speculation is then offered as to where the putative power of quantum computers may come from.
A formalisation of nonfinite computation
, 1997
"... Abstract. Abstract Recent work in the field of relativitistic spacetimes suggests that it may be possible for a machine to perform an infinite number of operations in a finite time. Investigation of these machines has three motivations. First, because the machines may be physically possible, they h ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. Abstract Recent work in the field of relativitistic spacetimes suggests that it may be possible for a machine to perform an infinite number of operations in a finite time. Investigation of these machines has three motivations. First, because the machines may be physically possible, they have implications for the general question of what problems are theoretically solvable. Second, the physical laws that govern their operation give rise to a rich mathematical structure. Third, by investigating general relativistic computation, we get a clearer picture of properties peculiar to the special case of Turing computation. A mathematical formalisation of the operation of the machines is presented, and shown to correspond to their physical operation. It is proved that there is no satisfactory way to give a finite description for the machines. Although Gödel sentences exist if attention is restricted to a finite set of machines, further results [Ear94,Hog96] about the computational power of the machines and their equivalence to the Kleene arithmetical hierarchy are shown to depend upon arbitrary assumptions. This gives rise to a nonfinite version of the ChurchTuring thesis. The case of nonfinite computation is used to arrive at an abstract principle of computation that is independent of physics. A dissertation submitted to the University of Cambridge
From logic to physics: How the meaning of computation changed over time.
"... The intuition guiding the de…nition of computation has shifted over time, a process that is re‡ected in the changing formulations of the ChurchTuring thesis. The theory of computation began with logic and gradually moved to the capacity of …nite automata. Consequently, modern computer models rely o ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The intuition guiding the de…nition of computation has shifted over time, a process that is re‡ected in the changing formulations of the ChurchTuring thesis. The theory of computation began with logic and gradually moved to the capacity of …nite automata. Consequently, modern computer models rely on general physical principles, with quantum computers representing the extreme case. The paper discusses this development, and the challenges to the ChurchTuring thesis in its physical form, in particular, Kieu’s quantum computer and relativistic hypercomputation. Finally, the robustness of the boundary between polynomial and exponential time complexity is considered in connection with quantum computers and quantum information theory. Key words: ChurchTuring thesis, hypercomputation, quantum computers 1 The ChurchTuring thesis and the meaning of ‘computable function’ The common formulation of the ChurchTuring thesis runs as follows: Every computable function is computable by a Turing machine