Results 1  10
of
59
Causes and explanations: A structuralmodel approach
 In Proceedings IJCAI01
, 2001
"... We propose a new definition of actual causes, using structural equations to model counterfactuals. We show that the definition yields a plausible and elegant account of causation that handles well examples which have caused problems for other definitions ..."
Abstract

Cited by 181 (12 self)
 Add to MetaCart
(Show Context)
We propose a new definition of actual causes, using structural equations to model counterfactuals. We show that the definition yields a plausible and elegant account of causation that handles well examples which have caused problems for other definitions
Direct and Indirect Effects
, 2005
"... The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This pape ..."
Abstract

Cited by 108 (24 self)
 Add to MetaCart
The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This paper presents a new way of defining the effect transmitted through a restricted set of paths, without controlling variables on the remaining paths. This permits the assessment of a more natural type of direct and indirect effects, one that is applicable in both linear and nonlinear models and that has broader policyrelated interpretations. The paper establishes conditions under which such assessments can be estimated consistently from experimental and nonexperimental data, and thus extends pathanalytic techniques to nonlinear and nonparametric models.
Axiomatizing causal reasoning
 Uncertainty in Artificial Intelligence
, 1998
"... Causal models defined in terms of a collection of equations, as defined by Pearl, are axiomatized here. Axiomatizations are provided for three successively more general classes of causal models: (1) the class of recursive theories (those without feedback), (2) the class of theories where the solutio ..."
Abstract

Cited by 81 (6 self)
 Add to MetaCart
(Show Context)
Causal models defined in terms of a collection of equations, as defined by Pearl, are axiomatized here. Axiomatizations are provided for three successively more general classes of causal models: (1) the class of recursive theories (those without feedback), (2) the class of theories where the solutions to the equations are unique, (3) arbitrary theories (where the equations may not have solutions and, if they do, they are not necessarily unique). It is shown that to reason about causality in the most general third class, we must extend the language used by Galles and Pearl (1997, 1998). In addition, the complexity of the decision procedures is characterized for all the languages and classes of models considered. 1.
Graphs, Causality, And Structural Equation Models
, 1998
"... Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers. ..."
Abstract

Cited by 51 (14 self)
 Add to MetaCart
Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers.
Reasoning With Cause And Effect
, 1999
"... This paper summarizes basic concepts and principles that I have found to be useful in dealing with causal reasoning. The paper is written as a companion to a lecture under the same title, to be presented at IJCAI99, and is intended to supplement the lecture with technical details and pointers to mo ..."
Abstract

Cited by 39 (0 self)
 Add to MetaCart
This paper summarizes basic concepts and principles that I have found to be useful in dealing with causal reasoning. The paper is written as a companion to a lecture under the same title, to be presented at IJCAI99, and is intended to supplement the lecture with technical details and pointers to more elaborate discussions in the literature. The ruling conception will be to treat causation as a computational schema devised to identify the invariant relationships in the environment, so as to facilitate reliable prediction of the effect of actions. This conception, as well as several of its satellite principles and tools, has been guiding paradigm for several research communities in AI, most notably those connected with causal discovery, troubleshooting, planning under uncertainty and modeling the behavior of physical systems. My hopes are to encourage a broader and more effective usage of causal modeling by explicating these common principles in simple and familiar mathematical form. Af...
Identifiability of pathspecific effects
 In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence IJCAI05
, 2005
"... Counterfactual quantities representing pathspecific effects arise in cases where we are interested in computing the effect of one variable on another only along certain causal paths in the graph (in other words by excluding a set of edges from consideration). A recent paper [7] details a method by ..."
Abstract

Cited by 35 (18 self)
 Add to MetaCart
(Show Context)
Counterfactual quantities representing pathspecific effects arise in cases where we are interested in computing the effect of one variable on another only along certain causal paths in the graph (in other words by excluding a set of edges from consideration). A recent paper [7] details a method by which such an exclusion can be specified formally by fixing the value of the parent node of each excluded edge. In this paper we derive simple, graphical conditions for experimental identifiability of pathspecific effects, namely, conditions under which pathspecific effects can be estimated consistently from data obtained from controlled experiments. 1
Complete Identification Methods for the Causal Hierarchy
"... We consider a hierarchy of queries about causal relationships in graphical models, where each level in the hierarchy requires more detailed information than the one below. The hierarchy consists of three levels: associative relationships, derived from a joint distribution over the observable variabl ..."
Abstract

Cited by 21 (8 self)
 Add to MetaCart
(Show Context)
We consider a hierarchy of queries about causal relationships in graphical models, where each level in the hierarchy requires more detailed information than the one below. The hierarchy consists of three levels: associative relationships, derived from a joint distribution over the observable variables; causeeffect relationships, derived from distributions resulting from external interventions; and counterfactuals, derived from distributions that span multiple “parallel worlds ” and resulting from simultaneous, possibly conflicting observations and interventions. We completely characterize cases where a given causal query can be computed from information lower in the hierarchy, and provide algorithms that accomplish this computation. Specifically, we show when effects of interventions can be computed from observational studies, and when probabilities of counterfactuals can be computed from experimental studies. We also provide a graphical characterization of those queries which cannot be computed (by any method) from queries at a lower layer of the hierarchy.
Probabilities of Causation: Bounds and Identification
 Annals of Mathematics and Artificial Intelligence
, 2000
"... This paper deals with the problem of estimating the probability of causation, that is, the probability that one event was the real cause of another, in a given scenario. Starting from structuralsemantical definitions of the probabilities of necessary or sufficient causation (or both), we show h ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
This paper deals with the problem of estimating the probability of causation, that is, the probability that one event was the real cause of another, in a given scenario. Starting from structuralsemantical definitions of the probabilities of necessary or sufficient causation (or both), we show how to bound these quantities from data obtained in experimental and observational studies, under general assumptions concerning the datagenerating process. In particular, we strengthen the results of Pearl (1999) by presenting sharp bounds based on combined experimental and nonexperimental data under no process assumptions, as well as under the mild assumptions of exogeneity (no confounding) and monotonicity (no prevention). These results delineate more precisely the basic assumptions that must be made before statistical measures such as the excessriskratio could be used for assessing attributional quantities such as the probability of causation. 1
What counterfactuals can be tested
 In Proceedings of the TwentyThird Conference on Uncertainty in Artificial Intelligence
, 2007
"... Counterfactual statements, e.g., ”my headache would be gone had I taken an aspirin ” are central to scientific discourse, and are formally interpreted as statements derived from ”alternative worlds”. However, since they invoke hypothetical states of affairs, often incompatible with what is actual ..."
Abstract

Cited by 20 (9 self)
 Add to MetaCart
Counterfactual statements, e.g., ”my headache would be gone had I taken an aspirin ” are central to scientific discourse, and are formally interpreted as statements derived from ”alternative worlds”. However, since they invoke hypothetical states of affairs, often incompatible with what is actually known or observed, testing counterfactuals is fraught with conceptual and practical difficulties. In this paper, we provide a complete characterization of ”testable counterfactuals, ” namely, counterfactual statements whose probabilities can be inferred from physical experiments. We provide complete procedures for discerning whether a given counterfactual is testable and, if so, expressing its probability in terms of experimental data. 1