Results 1  10
of
62
A Bayesian method for the induction of probabilistic networks from data
 Machine Learning
, 1992
"... Abstract. This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of ..."
Abstract

Cited by 1073 (26 self)
 Add to MetaCart
Abstract. This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods in this paper to previous work, and we discuss open problems.
A Theory Of Inferred Causation
, 1991
"... This paper concerns the empirical basis of causation, and addresses the following issues: 1. the clues that might prompt people to perceive causal relationships in uncontrolled observations. 2. the task of inferring causal models from these clues, and 3. whether the models inferred tell us anything ..."
Abstract

Cited by 203 (35 self)
 Add to MetaCart
This paper concerns the empirical basis of causation, and addresses the following issues: 1. the clues that might prompt people to perceive causal relationships in uncontrolled observations. 2. the task of inferring causal models from these clues, and 3. whether the models inferred tell us anything useful about the causal mechanisms that underly the observations. We propose a minimalmodel semantics of causation, and show that, contrary to common folklore, genuine causal influences can be distinguished from spurious covariations following standard norms of inductive reasoning. We also establish a sound characterization of the conditions under which such a distinction is possible. We provide an effective algorithm for inferred causation and show that, for a large class of data the algorithm can uncover the direction of causal influences as defined above. Finally, we address the issue of nontemporal causation.
Theory Refinement on Bayesian Networks
, 1991
"... Theory refinement is the task of updating a domain theory in the light of new cases, to be done automatically or with some expert assistance. The problem of theory refinement under uncertainty is reviewed here in the context of Bayesian statistics, a theory of belief revision. The problem is reduced ..."
Abstract

Cited by 183 (5 self)
 Add to MetaCart
Theory refinement is the task of updating a domain theory in the light of new cases, to be done automatically or with some expert assistance. The problem of theory refinement under uncertainty is reviewed here in the context of Bayesian statistics, a theory of belief revision. The problem is reduced to an incremental learning task as follows: the learning system is initially primed with a partial theory supplied by a domain expert, and thereafter maintains its own internal representation of alternative theories which is able to be interrogated by the domain expert and able to be incrementally refined from data. Algorithms for refinement of Bayesian networks are presented to illustrate what is meant by "partial theory", "alternative theory representation ", etc. The algorithms are an incremental variant of batch learning algorithms from the literature so can work well in batch and incremental mode. 1 Introduction Theory refinement is the task of updating a domain theory in the light of...
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 172 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...
Learning Bayesian Networks from Data: An InformationTheory Based Approach
"... This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional indepe ..."
Abstract

Cited by 92 (5 self)
 Add to MetaCart
This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.
Scalable Techniques for Mining Causal Structures
 Data Mining and Knowledge Discovery
, 1998
"... Mining for association rules in market basket data has proved a fruitful area of research. Measures such as conditional probability (confidence) and correlation have been used to infer rules of the form "the existence of item A implies the existence of item B." However, such rules indicate only a st ..."
Abstract

Cited by 88 (1 self)
 Add to MetaCart
Mining for association rules in market basket data has proved a fruitful area of research. Measures such as conditional probability (confidence) and correlation have been used to infer rules of the form "the existence of item A implies the existence of item B." However, such rules indicate only a statistical relationship between A and B. They do not specify the nature of the relationship: whether the presence of A causes the presence of B, or the converse, or some other attribute or phenomenon causes both to appear together. In applications, knowing such causal relationships is extremely useful for enhancing understanding and effecting change. While distinguishing causality from correlation is a truly difficult problem, recent work in statistics and Bayesian learning provide some avenues of attack. In these fields, the goal has generally been to learn complete causal models, which are essentially impossible to learn in largescale data mining applications with a large number of variab...
Construction of Bayesian Network Structures From Data: A Brief Survey and an Efficient Algorithm
, 1995
"... Previous algorithms for the recovery of Bayesian belief network structures from data have been either highly dependent on conditional independence (CI) tests, or have required on ordering on the nodes to be supplied by the user. We present an algorithm that integrates these two approaches: CI tests ..."
Abstract

Cited by 77 (8 self)
 Add to MetaCart
Previous algorithms for the recovery of Bayesian belief network structures from data have been either highly dependent on conditional independence (CI) tests, or have required on ordering on the nodes to be supplied by the user. We present an algorithm that integrates these two approaches: CI tests are used to generate an ordering on the nodes from the database, which is then used to recover the underlying Bayesian network structure using a nonCltestbased method. Results of the evaluation of the algorithm on a number of databases (e.g., ALARM, LED, and SOYBEAN) are presented. We also discuss some algorithm performance issues and open problems.
Learning Belief Networks from Data: An Information Theory Based Approach
 In Proceedings of the Sixth ACM International Conference on Information and Knowledge Management
"... This paper presents an efficient algorithm for learning Bayesian belief networks from databases. The algorithm takes a database as input and constructs the belief network structure as output. The construction process is based on the computation of mutual information of attribute pairs. Given a data ..."
Abstract

Cited by 63 (7 self)
 Add to MetaCart
This paper presents an efficient algorithm for learning Bayesian belief networks from databases. The algorithm takes a database as input and constructs the belief network structure as output. The construction process is based on the computation of mutual information of attribute pairs. Given a data set that is large enough, this algorithm can generate a belief network very close to the underlying model, and at the same time, enjoys the time complexity of O N ( ) 4 on conditional independence (CI) tests. When the data set has a normal DAGFaithful (see Section 3.2) probability distribution, the algorithm guarantees that the structure of a perfect map [Pearl, 1988] of the underlying dependency model is generated. To evaluate this algorithm, we present the experimental results on three versions of the wellknown ALARM network database, which has 37 attributes and 10,000 records. The results show that this algorithm is accurate and efficient. The proof of correctness and the analysis of c...
An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation
 Proc. of the Eighth Conference on Uncertainty in Artificial Intelligence
, 1992
"... In a previous paper [8] we presented an algorithm for extracting causal influences from independence information, where a causal influence was defined as the existence of a directed arc in all minimal causal models consistent with the data. In this paper we address the question of deciding whether t ..."
Abstract

Cited by 60 (1 self)
 Add to MetaCart
In a previous paper [8] we presented an algorithm for extracting causal influences from independence information, where a causal influence was defined as the existence of a directed arc in all minimal causal models consistent with the data. In this paper we address the question of deciding whether there exists a causal model that explains ALL the observed dependencies and independencies. Formally, given a list M of conditional independence statements, it is required to decide whether there exists a directed acyclic graph D that is perfectly consistent with M, namely, every statement in M, and no other, is reflected via dseparation in D. We present and analyze an effective algorithm that tests for the existence of such a dag, and produces one, if it exists. Key words: Causal modeling, graphoids, conditional independence. 1 1 Introduction Directed acyclic graphs (dags) have been widely used for modeling statistical data. Starting with the pioneering work of Sewal Wright [...
An Algorithm for Bayesian Belief Network Construction from Data
 IN PROCEEDINGS OF AI & STATâ€™97
, 1997
"... This paper presents an efficient algorithm for constructing Bayesian belief networks from databases. The algorithm takes a database and an attributes ordering (i.e., the causal attributes of an attribute should appear earlier in the order) as input and constructs a belief network structure as output ..."
Abstract

Cited by 43 (6 self)
 Add to MetaCart
This paper presents an efficient algorithm for constructing Bayesian belief networks from databases. The algorithm takes a database and an attributes ordering (i.e., the causal attributes of an attribute should appear earlier in the order) as input and constructs a belief network structure as output. The construction process is based on the computation of mutual information of attribute pairs. Given a data set which is large enough and has a DAGIsomorphic probability distribution, this algorithm guarantees that the perfect map [1] of the underlying dependency model is generated, and at the same time, enjoys the time complexity of O N ( ) on conditional independence (CI) tests. To evaluate this algorithm, we present the experimental results on three versions of the wellknown ALARM network database, which has 37 attributes and 10,000 records. The correctness proof and the analysis of computational complexity are also presented. We also discuss the features of our work and relate it to previous works.