Results 1  10
of
117
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 603 (7 self)
 Add to MetaCart
We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from this limit. Our analysis leads us to an equivalence between ordinary gauge fields and noncommutative gauge fields, which is realized by a change of variables that can be described explicitly. This change of variables is checked by comparing the ordinary DiracBornInfeld theory with its noncommutative counterpart. We obtain a new perspective on noncommutative gauge theory on a torus, its Tduality, and Morita equivalence. We also discuss the D0/D4 system, the relation to Mtheory in DLCQ, and a possible noncommutative version of the sixdimensional (2, 0) theory. 8/99
Hopf algebras, cyclic cohomology and the transverse index theorem
 Comm. Math. Phys
, 1998
"... In this paper we present the solution of a longstanding internal problem of noncommutative geometry, namely the computation of the index of transversally elliptic operators on foliations. ..."
Abstract

Cited by 142 (18 self)
 Add to MetaCart
In this paper we present the solution of a longstanding internal problem of noncommutative geometry, namely the computation of the index of transversally elliptic operators on foliations.
Noncommutative manifolds, the instanton algebra and isospectral deformations
 Comm. Math. Phys
"... We give new examples of noncommutative manifolds that are less standard than the NCtorus or Moyal deformations of R n. They arise naturally from basic considerations of noncommutative differential topology and have nontrivial global features. The new examples include the instanton algebra and the ..."
Abstract

Cited by 127 (19 self)
 Add to MetaCart
We give new examples of noncommutative manifolds that are less standard than the NCtorus or Moyal deformations of R n. They arise naturally from basic considerations of noncommutative differential topology and have nontrivial global features. The new examples include the instanton algebra and the NC4spheres S4 θ. We construct the noncommutative algebras A = C ∞ (S4 θ) of functions on NCspheres as solutions to the vanishing, chj(e) = 0,j < 2, of the Chern character in the cyclic homology of A of an idempotent e ∈ M4(A), e2 = e, e = e ∗. We describe the universal noncommutative space obtained from this equation as a noncommutative Grassmanian as well as the corresponding notion of admissible morphisms. This space Gr contains the suspension of a NC3sphere intimately related to quantum group deformations SUq(2) of SU(2) but for unusual values (complex values of modulus one) of the parameter q of qanalogues, q = exp(2πiθ). We then construct the noncommutative geometry of S4 θ as given by a spectral triple (A, H,D) and check all axioms of noncommutative manifolds. In a previous paper it was shown that for any Riemannian metric gµν on S4 whose volume form √ g d4x is the same as the one for the round metric, the corresponding Dirac operator gives a solution to the following quartic equation, e − 1
Noncommutative FiniteDimensional Manifolds  I. SPHERICAL MANIFOLDS AND RELATED EXAMPLES
, 2001
"... We exhibit large classes of examples of noncommutative finitedimensional manifolds which are (nonformal) deformations of classical manifolds. The main result of this paper is a complete description of noncommutative threedimensional spherical manifolds, a noncommutative version of the sphere S 3 d ..."
Abstract

Cited by 89 (12 self)
 Add to MetaCart
We exhibit large classes of examples of noncommutative finitedimensional manifolds which are (nonformal) deformations of classical manifolds. The main result of this paper is a complete description of noncommutative threedimensional spherical manifolds, a noncommutative version of the sphere S 3 defined by basic Ktheoretic equations. We find a 3parameter family of deformations of the standard 3sphere S 3 and a corresponding 3parameter deformation of the 4dimensional Euclidean space R 4. For generic values of the deformation parameters we show that the obtained algebras of polynomials on the deformed R 4 u are isomorphic to the algebras introduced by Sklyanin in connection with the YangBaxter equation. Special values of the deformation parameters do not give rise to Sklyanin algebras and we extract a subclass, the θdeformations, which we generalize in any dimension and various contexts, and study in some details. Here, and
Algebras and Hopf algebras IN BRAIDED CATEGORIES
, 1995
"... This is an introduction for algebraists to the theory of algebras and Hopf algebras in braided categories. Such objects generalise superalgebras and superHopf algebras, as well as colourLie algebras. Basic facts about braided categories C are recalled, the modules and comodules of Hopf algebras i ..."
Abstract

Cited by 87 (13 self)
 Add to MetaCart
This is an introduction for algebraists to the theory of algebras and Hopf algebras in braided categories. Such objects generalise superalgebras and superHopf algebras, as well as colourLie algebras. Basic facts about braided categories C are recalled, the modules and comodules of Hopf algebras in such categories are studied, the notion of ‘braidedcommutative ’ or ‘braidedcocommutative ’ Hopf algebras (braided groups) is reviewed and a fully diagrammatic proof of the reconstruction theorem for a braided group Aut (C) is given. The theory has important implications for the theory of quasitriangular Hopf algebras (quantum groups). It also includes important examples such as the degenerate Sklyanin algebra and the quantum plane.
A survey of foliations and operator algebras
 Proc. Sympos. Pure
, 1982
"... 1 Transverse measure for flows 4 2 Transverse measure for foliations 6 ..."
Abstract

Cited by 53 (5 self)
 Add to MetaCart
1 Transverse measure for flows 4 2 Transverse measure for foliations 6
Noncommutative geometry, quantum fields and motives
 Colloquium Publications, Vol.55, American Mathematical Society
, 2008
"... ..."
Untwisting noncommutative R d and the equivalence of quantum field theories
 Nucl.Phys. B
, 2000
"... We show that there is a duality exchanging noncommutativity and nontrivial statistics for quantum field theory on R d. Employing methods of quantum groups, we observe that ordinary and noncommutative R d are related by twisting. We extend the twist to an equivalence for quantum field theory using t ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
We show that there is a duality exchanging noncommutativity and nontrivial statistics for quantum field theory on R d. Employing methods of quantum groups, we observe that ordinary and noncommutative R d are related by twisting. We extend the twist to an equivalence for quantum field theory using the framework of braided quantum field theory. The twist exchanges both commutativity with noncommutativity and ordinary with nontrivial statistics. The same holds for the noncommutative torus.