Results 1 
8 of
8
Two sources are better than one for increasing the Kolmogorov complexity of infinite sequences
, 2007
"... ..."
Constructive dimension and weak truthtable degrees
 In Computation and Logic in the Real World  Third Conference of Computability in Europe. SpringerVerlag Lecture Notes in Computer Science #4497
, 2007
"... Abstract. This paper examines the constructive Hausdorff and packing dimensions of weak truthtable degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is weak truthtable equivalent to a sequence R with ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
Abstract. This paper examines the constructive Hausdorff and packing dimensions of weak truthtable degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is weak truthtable equivalent to a sequence R with dimH(R) ≥ dimH(S)/dimP(S) − ɛ, for arbitrary ɛ> 0. Furthermore, if dimP(S)> 0, then dimP(R) ≥ 1−ɛ. The reduction thus serves as a randomness extractor that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of wtt degrees (and, by extension, Turing degrees). A lower bound of dimH(S)/dimP(S) is shown to hold for the wtt degree of any sequence S. A new proof is given of a previouslyknown zeroone law for the constructive packing dimension of wtt degrees. It is also shown that, for any regular sequence S (that is, dimH(S) = dimP(S)) such that dimH(S)> 0, the wtt degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor.
Constructive dimension and Turing degrees
"... This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is Turing equivalent to a sequence R with dimH(R) ≥ (dimH(S)/dimP(S)) ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is Turing equivalent to a sequence R with dimH(R) ≥ (dimH(S)/dimP(S)) − ɛ, for arbitrary ɛ> 0. Furthermore, if dimP(S)> 0, then dimP(R) ≥ 1 − ɛ. The reduction thus serves as a randomness extractor that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dimH(S)/dimP(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previouslyknown zeroone law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dimH(S) = dimP(S)) such that dimH(S)> 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truthtable and bounded Turing reductions differ in their ability to extract dimension.
TURING DEGREES OF REALS OF POSITIVE EFFECTIVE PACKING DIMENSION
"... Abstract. A relatively longstanding question in algorithmic randomness is Jan Reimann’s question whether there is a Turing cone of broken dimension. That is, is there a real A such that {B: B ≤T A} contains no 1random real, yet contains elements of nonzero effective Hausdorff Dimension? We show tha ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Abstract. A relatively longstanding question in algorithmic randomness is Jan Reimann’s question whether there is a Turing cone of broken dimension. That is, is there a real A such that {B: B ≤T A} contains no 1random real, yet contains elements of nonzero effective Hausdorff Dimension? We show that the answer is affirmative if Hausdorff dimension is replaced by its inner analogue packing dimension. We construct a minimal degree of effective packing dimension 1. This leads us to examine the Turing degrees of reals with positive effective packing dimension. Unlike effective Hausdorff dimension, this is a notion of complexity which is shared by both random and sufficiently generic reals. We provide a characterization of the c.e. array noncomputable degrees in terms of effective packing dimension. 1.
Pushdown dimension
 Theoretical Computer Science
, 2007
"... Abstract Resourcebounded dimension is a notion of computational information density of infinite sequences based on computationally bounded gamblers. This paper develops the theory of pushdown dimension and explores its relationship with finitestate dimension.The pushdown dimension of any sequence ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract Resourcebounded dimension is a notion of computational information density of infinite sequences based on computationally bounded gamblers. This paper develops the theory of pushdown dimension and explores its relationship with finitestate dimension.The pushdown dimension of any sequence is trivially bounded above by its finitestate dimension, since a pushdown gambler can simulate any finitestate gambler. We show thatfor every rational 0 < d < 1, there exists a sequence with finitestate dimension d whosepushdown dimension is at most d/2. This provides a stronger quantitative analogue of thewellknown fact that pushdown automata decide strictly more languages than finitestate
Article Using Information Theory to Study Efficiency and Capacity of Computers and Similar Devices
, 2010
"... information ..."
Université de Provence
, 2009
"... This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is Turing equivalent to a sequence R with dimH(R) ≥ (dimH(S)/dimP(S)) ..."
Abstract
 Add to MetaCart
This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is Turing equivalent to a sequence R with dimH(R) ≥ (dimH(S)/dimP(S)) − ǫ, for arbitrary ǫ> 0. Furthermore, if dimP(S)> 0, then dimP(R) ≥ 1 − ǫ. The reduction thus serves as a randomness extractor that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dimH(S)/dimP(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previouslyknown zeroone law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dimH(S) = dimP(S)) such that dimH(S)> 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truthtable and bounded Turing reductions differ in their ability to extract dimension. 1